Appendix 7A

Air Quality Impact Assessment

[THIS PAGE INTENTIONALLY LEFT BLANK]

# Proposed Derrygreenagh Power Project Environmental Impact Assessment Report

**Appendix 7A: Air Quality Impact Assessment** 

### DOCUMENT HISTORY

| <b>Document Ref</b> | Air Quality Dispersion Modelling Assessment |      |              |  |
|---------------------|---------------------------------------------|------|--------------|--|
| Revision            | EIAR issue                                  |      |              |  |
| Author              | Elisa Uginet, Danny Duce                    |      |              |  |
| Signed              | [Signature redacted]                        | Date | January 2024 |  |
| Approved By         | Garry Gray                                  |      |              |  |
| Signed              | [Signature redacted]                        | Date | January 2024 |  |
| Document            | AECOM                                       |      |              |  |
| Owner               |                                             |      |              |  |

## GLOSSARY

| Abbreviation      | Description                                             |
|-------------------|---------------------------------------------------------|
| CO                | Carbon monoxide                                         |
| DMRB              | Design Manual for Roads and Bridges                     |
| EFT               | Emission Factor database Tool                           |
| ELV               | Emission Limit Values                                   |
| Env Std           | Environmental Standard                                  |
| EPA               | Environmental Protection Agency                         |
| HRA               | Habitats Regulations Assessment                         |
| IAQM              | Institute of Air Quality Management                     |
| IED               | Industrial Emissions Directive                          |
| IPPC              | Integrated Pollution Prevention and Control             |
| NO <sub>X</sub>   | Oxides of nitrogen                                      |
| NO <sub>2</sub>   | Nitrogen dioxide                                        |
| PC                | Process Contribution                                    |
| PEC               | Predicted Environmental Concentration (PC + Background) |
| PM <sub>10</sub>  | Particulate Matter of 10 µm diameter                    |
| PM <sub>2.5</sub> | Particulate Matter of 5 µm diameter                     |
| SAC               | Special Area of Conservation                            |
| SO <sub>2</sub>   | Sulphur Dioxide                                         |
| SPA               | Special Protection Area                                 |
| NHA               | National Heritage Area                                  |
| TOC               | Total Organic Carbon                                    |
| VOC               | Volatile organic compounds                              |

# CONTENTS

| 1.0  | OVERVIEW                                  | 1   |
|------|-------------------------------------------|-----|
| 2.0  | SCOPE                                     | 2   |
| 3.0  | ASSESSMENT CRITERIA                       | 5   |
| 4.0  | METHODOLOGY                               | 7   |
| 5.0  | BASELINE AIR QUALITY                      | .30 |
| 6.0  | CONSTRUCTION PHASE ASSESSMENT             | .38 |
| 7.0  | OPERATION DISPERSION MODELLING RESULTS    | .45 |
| 8.0  | CUMULATIVE IMPACTS                        | .60 |
| 9.0  | ASSESSMENT OF LIMITATIONS AND ASSUMPTIONS | .62 |
| 10.0 | SUMMARY                                   | .63 |
| 11.0 | REFERENCES                                | 64  |

# TABLES

| Table 7A.1: Environmental Standards for Air (for the Protection of Human Health)                          | 5    |
|-----------------------------------------------------------------------------------------------------------|------|
| Table 7A.2: Critical Level (CLe) Environmental Assessment Levels for Air (for the Protection of           |      |
| Designated Habitat Sites)                                                                                 | 6    |
| Table 7A.3: IAQM Examples of Definition of Magnitude of Construction Activities                           | 8    |
| Table 7A.4: Receptor Sensitivity to Construction Dust Effects                                             | 9    |
| Table 7A.5: Sensitivity of the Area to Dust Deposition Effects on People and Property, With Less than 1   | 00   |
| Properties Present                                                                                        | . 10 |
| Table 7A.6: Sensitivity of the Area to Human Health Impacts, with Less than 100 Properties Present,       |      |
| where the Annual Mean PM <sub>10</sub> Concentration is less than 24 $\mu$ g/m <sup>3</sup>               |      |
| Table 7A.7: Sensitivity of the Area to Ecological Impacts                                                 |      |
| Table 7A.8: Classification of Risk of Unmitigated Impacts                                                 |      |
| Table 7A.9: General ADMS 5 Model Conditions                                                               |      |
| Table 7A.10: Sources Properties – CCGT and Auxiliary Boiler                                               |      |
| Table 7A.11: Sources Properties – OCGT, Dew Point Heaters and LEL Castlelost                              | . 14 |
| Table 7A.12: Air Emission Limit Values (ELVs) as Specified in the Industrial Emission Directive (IED,     |      |
| 2010/75/EU) and the BAT-AELs (Official Journal of the European Union, 2019) – Natural Gas                 |      |
| Table 7A.13: Pollutant Emission Rates for natural gas sources                                             |      |
| Table 7A.14: Pollutant Emission Rates for Backup Fuel sources                                             |      |
| Table 7A.15: Modelled Domain - Selected Discrete Human Receptor Locations                                 |      |
| Table 7A.16: Modelled Domain – Ecological Receptor Locations                                              |      |
| Table 7A. 17: Modelled Domain - Receptor Grid                                                             |      |
| Table 7A. 18: Structures Incorporated into the Modelling Assessment                                       |      |
| Table 7A.19: Conversion Factors – Calculation of Nutrient Nitrogen Deposition                             |      |
| Table 7A.20: Conversion Factors – Calculation of Acid Deposition                                          |      |
| Table 7A.21: General ADMS Roads Model Conditions                                                          |      |
| Table 7A.22: Summary of Bias Adjustment Process                                                           |      |
| Table 7A. 23 Air Quality Monitoring Data                                                                  |      |
| Table 7A. 24 AECOM NO <sub>2</sub> Diffusion Tube Concentrations Monitored in 2023 and Annualised to 2022 |      |
| Table 7A. 25 Background Pollutant Concentrations                                                          |      |
| Table 7A. 26 Air Quality Statistics Predicted for Baseline Scenario in 2022                               | . 35 |

| Table 7A. 27 Air quality baseline statistics predicted for 2025 baseline scenario (including other                                                                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| committed developments)                                                                                                                                                                                                                  |
| Table 7A. 28 Air quality baseline statistics predicted for 2025 baseline scenario (including other                                                                                                                                       |
| committed developments)                                                                                                                                                                                                                  |
| Table 7A.29: Area Sensitivity for Receptors of Construction Dust         39                                                                                                                                                              |
| Table 7A.30: Risk of Impacts from Unmitigated Activities                                                                                                                                                                                 |
| Table 7A.31: Area Sensitivity for Receptors of Construction Dust                                                                                                                                                                         |
| Table 7A.32: Risk of Impacts from Unmitigated Activities                                                                                                                                                                                 |
| Table 7A. 33: Predicted change in annual mean NO <sub>2</sub> concentrations at discrete receptors (µg/m <sup>3</sup> ) due to                                                                                                           |
| construction road traffic emissions, with comparison against Environmental Standard criteria                                                                                                                                             |
| Table 7A. 34: Predicted change in annual mean PM <sub>10</sub> concentrations at discrete receptors (µg/m <sup>3</sup> ) due to                                                                                                          |
| construction road traffic emissions, with comparison against Environmental Standard criteria                                                                                                                                             |
| Table 7A. 35: Predicted change in annual mean $\dot{PM}_{2.5}$ concentrations at discrete receptors ( $\mu$ g/m <sup>3</sup> ) due to                                                                                                    |
| construction road traffic emissions with comparison against Environmental Standard criteria                                                                                                                                              |
| Table 7A.36: Maximum Modelled Impact on Ground Level Concentrations (µg/m <sup>3</sup> ), Raw Model Output 48                                                                                                                            |
| Table 7A. 37: Predicted Change in Annual Mean NO <sub>2</sub> Concentrations at Discrete Receptors (µg/m <sup>3</sup> ) Due                                                                                                              |
| to Emissions from the Proposed Development for the Full Load Scenario, with Comparison Against                                                                                                                                           |
| Environmental Standard Criteria                                                                                                                                                                                                          |
| Table 7A. 38: Predicted Change in 99.79 <sup>th</sup> Percentile of Hourly Mean NO <sub>2</sub> Concentrations at Discrete                                                                                                               |
| receptors (µg/m <sup>3</sup> ) Due to Emissions from the Proposed Development for the Full Load Scenario, with                                                                                                                           |
| Comparison Against Environmental Standard Criteria                                                                                                                                                                                       |
| Table 7A. 39: Predicted Change in 99.79 <sup>th</sup> Percentile of Hourly Mean NO <sub>2</sub> Concentrations at Discrete                                                                                                               |
| receptors (µg/m <sup>3</sup> ) Due to Emissions from the Proposed Development for the Backup scenario, with                                                                                                                              |
| Comparison Against Environmental Standard Criteria                                                                                                                                                                                       |
| Table 7A. 40: Predicted Change in 99.79th Percentile of Hourly Mean NO <sub>2</sub> Concentrations at Discrete                                                                                                                           |
| receptors (µg/m <sup>3</sup> ) Due to Emissions from the Proposed Development for the Low Load scenario, with                                                                                                                            |
| Comparison Against Environmental Standard Criteria51                                                                                                                                                                                     |
| Table 7A. 41: Predicted Change in 8-hour Rolling CO Concentrations at Discrete Receptors (µg/m <sup>3</sup> ) Due                                                                                                                        |
| to Emissions from the Proposed Development for the Full Load Scenario, with Comparison Against                                                                                                                                           |
| Environmental Standard Criteria52                                                                                                                                                                                                        |
| Table 7A. 42: Predicted Change in 8-hour Rolling CO Concentrations at Discrete Receptors (µg/m <sup>3</sup> ) Due                                                                                                                        |
| to Emissions from the Proposed Development for the Backup Scenario, with Comparison Against                                                                                                                                              |
| Environmental Standard Criteria53                                                                                                                                                                                                        |
| Table 7A. 43: Predicted Change in 8-hour Rolling CO Concentrations at Discrete Receptors (µg/m <sup>3</sup> ) Due                                                                                                                        |
| to Emissions from the Proposed Development for the Low Load Scenario, with Comparison Against                                                                                                                                            |
| Environmental Standard Criteria                                                                                                                                                                                                          |
| Table 7A. 44: Predicted Change in 90.71 <sup>th</sup> Percentile of Hourly Mean PM <sub>10</sub> Concentrations at Discrete                                                                                                              |
| Receptors (µg/m <sup>3</sup> ) Due to Emissions from the Proposed Development for the Backup Scenario, with                                                                                                                              |
| Comparison Against Environmental Standard Criteria                                                                                                                                                                                       |
| Table 7A.45: Dispersion Modelling Results for Ecological Receptors Due to Emissions from the Proposed                                                                                                                                    |
| Development for the Full Load Scenario - NOx Annual Mean                                                                                                                                                                                 |
| Table 7A.46: Dispersion Modelling Results for Ecological Receptors Due to Emissions from the Proposed                                                                                                                                    |
| Development for the Full Load Scenario – NH <sub>3</sub> Annual Mean                                                                                                                                                                     |
| Table 7A.47: Dispersion Modelling Results for Ecological Receptors due to Emissions from the Proposed                                                                                                                                    |
| Development for the Full Load Scenario – Nutrient Nitrogen Deposition (kg/ha/yr)                                                                                                                                                         |
| Table 7A.48: Dispersion Modelling Results for Ecological Receptors Due to Emissions from the Proposed                                                                                                                                    |
| Development for the Full Load Scenario – Total Acid Deposition N + S (keq/ha/yr)                                                                                                                                                         |
| Table 7A. 49: Predicted change in annual mean $NO_2$ concentrations at discrete receptors ( $\mu g/m^3$ ) due to                                                                                                                         |
| emissions from the Proposed Development for the Cumulative scenario on natural gas, with                                                                                                                                                 |
| comparison against Environmental Standard Criteria                                                                                                                                                                                       |
| Table 7A. 50: Predicted change in 99.79 <sup>th</sup> percentile of hourly means NO <sub>2</sub> concentrations at discrete receptors (µg/m <sup>3</sup> ) due to emissions from the Proposed Development for the Cumulative scenario on |
| natural gas, with comparison against Environmental Standard Criteria                                                                                                                                                                     |
| Table 7A. 51: Predicted change in 8-hour rolling CO concentrations at discrete receptors       71                                                                                                                                        |
| Table TA. 51. Fredicied change in 6-hour rolling CO concentrations at discrete receptors                                                                                                                                                 |

| Table 7A.52: Dispersion Modelling Results for Ecological Receptors for the Cumulative Scenario- NO <sub>X</sub><br>Annual Mean                   | 72 |
|--------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Table 7A.53: Dispersion Modelling Results for Ecological Receptors for the Cumulative Scenario- NH <sub>3</sub><br>Annual Mean                   |    |
| Table 7A.54: Dispersion Modelling Results for Ecological Receptors for the Cumulative Scenario –         Nutrient Nitrogen Deposition (kg/ha/yr) | 73 |
| Table 7A.55: Dispersion Modelling Results for Ecological Receptors for the Cumulative Scenario – Total         Acid Deposition N + S (keq/ha/yr) | I  |

#### ANNEXES

ANNEX A: FIGURES (CHAPTER 7)

ANNEX B: ROAD TRAFFIC FLOW DATA

ANNEX C: RAW DIFFUSION TUBE RESULTS FROM STAFFORDSHIRE LABORATORY

ANNEX D: ASSESSMENT OF CUMULATIVE IMPACTS

ANNEX E: CONSTRUCTION DUST MITIGATION MEASURES

# 1.0 OVERVIEW

- 1.1.1 This air quality dispersion modelling report quantifies the potential impact of the operation of a new Combined Cycle Gas Turbine (CCGT) unit and an Open Cycle Gas Turbine (OCGT) unit, gas above ground installation (AGI), electricity grid connections including substations and associated buildings and infrastructure ('the Proposed Development') on land within the Derrygreenagh bog group (Bord na Móna Energy Park) in Co. Offaly, Republic of Ireland. It also considers potential impacts from the Overall Project, which includes the Proposed Development as well as the Gas Connection Corridor.
- 1.1.2 Emissions to air from the Proposed Development and Overall Project have the potential to adversely affect human health and sensitive ecosystems. This report details the results of a dispersion modelling assessment of emissions from the process and associated road traffic.
- 1.1.3 The magnitude of air quality impacts at sensitive human receptors are quantified for pollutants emitted from the stack of the Proposed Development and Overall Project. The impact of emissions on sensitive ecological receptors is considered in the context of relevant Critical Loads (deposition to ground) or Critical Levels (atmospheric pollutant concentrations) for designated nature sites.
- 1.1.4 The assessment considers emissions from the Proposed Development and Overall Project during normal operational conditions (at full and minimum load) and during the use of back-up fuel. Non routine emissions, such as those which may occur during the commissioning process or other short-term events typically only occur on an infrequent basis, are detected by the process control system and rectified within a short time period and are tightly regulated by the Environmental Protection Agency (EPA). For this reason, no detailed consideration of impacts associated with non-routine or emergency events is included within this assessment.

# 2.0 SCOPE

#### 2.1 Combustion Plant Emissions

- 2.1.1 The assessment considers the impact of process emissions on local air quality, under normal operating conditions, from the emissions stacks ('the stacks') serving the combustion process. This includes the CCGT, OCGT, AGI and GRF dew point heaters and the auxiliary boiler. The assessment considers impacts in the year in which the Proposed Development is due to commence operation, 2027.
- 2.1.2 The dispersion of emissions is predicted using the dispersion model ADMS 6. The results are presented in both tabular format and as contours of predicted ground level process contributions overlaid on mapping of the surrounding area.
- 2.1.3 Emissions to air from combustion facilities are currently governed by Directive 2010/75/EU, the Industrial Emissions Directive (IED) (European Commission, 2010), which was transposed into Irish law in April 2013 (Environmental Protection Agency (Industrial Emissions) (Licensing) Regulations 2013, S.I. No. 138/2013). This Directive amends, consolidates and replaces seven Directives on pollution from industrial installations, including those relating to Integrated Pollution Prevention and Control (IPPC).
- 2.1.4 The IED contains measures relating to the control of emissions, including emissions to air, for example by specifying minimum standards for gas temperature and the residence time of combustion gases within the combustion chamber. The Directive sets limits on emissions of a wide range of air pollutants and requires operators to monitor and report emissions to air as well as to other environmental media.
- 2.1.5 The Proposed Development would be regulated under the Industrial Emissions Directive (IED) and in accordance with the Large Combustion Plants BREF. This BREF was updated, and the final version was published in 2017 and was formally adopted by the EU soon after. For the purposes of the IED and Permitting, the conclusions from the updated BREF should be regarded as enforceable through Environmental Permits and it is assumed that the Environmental Protection Agency (EPA) would set specific limits on the Environmental Permit based on the BAT-associated emission levels (BAT-AELs).
- 2.1.6 The design of the flue gas treatment system needs to be fully compliant with current legislation, meeting the requirements of BAT as well as the EPA Act and the IED. In accordance with Article 15, paragraph 2, of the IED, the emission limits that the Proposed Development plant will be designed to meet will be based on BAT. BAT-AELs are included in the Large Combustion Plants BREF that has now been published and these have been applied in the air impact assessment accordingly.
- 2.1.7 The pollutants considered within this assessment from the Proposed Development stacks are:
  - oxides of nitrogen (NO<sub>X</sub>), as Nitrogen Dioxide (NO<sub>2</sub>);
  - particulate matter (as PM<sub>10</sub> and PM<sub>2.5</sub> size fractions);

- carbon monoxide (CO); and
- Ammonia (NH<sub>3</sub>).
- 2.1.8 A comparison has been made between predicted model output concentrations, and short-term and long-term Environmental Standards (Env Std), set out within EPA's Air Dispersion Modelling from Industrial Installations Guidance Note (AG4) (EPA, 2019).

#### 2.2 Cumulative Impacts

- 2.2.1 Impacts from existing sources of pollution in the area have been accounted for in the adoption of site-specific background pollutant concentrations from archive sources and a programme of project-specific baseline air quality monitoring in close proximity to the Proposed Development.
- 2.2.2 The other development specifically modelled in the cumulative impact assessment is the LEL Castlelost Approved Development (Ref SEP-0347).
- 2.2.3 The assessment of cumulative impacts is contained in Section 8 of this Report.

#### 2.3 Sources of Information

- 2.3.1 The information used within this air quality assessment includes:
  - data on emission concentrations to atmosphere from the process, taken from limit values in the IED and BAT-AEL values, or data provided by Bord na Móna Powergen Limited and Fichtner Consulting Engineers;
  - details on the development layout provided by Bord na Móna Powergen Limited and Fichtner Consulting Engineers;
  - OSi (Ordnance Survey Ireland) mapping;
  - baseline air quality data from project specific monitoring, published sources and Local Authorities;
  - Information on the construction plans;
  - meteorological data supplied by ADM Ltd; and
  - road traffic flow data from the AECOM traffic team.

### 2.4 Assessment Structure

- 2.4.1 The remainder of this Appendix is set out as follows:
  - Section 3: Assessment criteria;
  - Section 4: Assessment methodology;
  - Section 5: Summary of baseline air quality;
  - Section 6: Construction Assessment;
  - Section 7: Operation Dispersion Modelling Results;
  - Section 8: Cumulative Impacts;

- Section 9: Assessment limitations and assumptions; and
- Section 10: Conclusions.

## 3.0 ASSESSMENT CRITERIA

#### 3.1 Environmental Standards for the Protection of Human Health

- 3.1.1 The Environmental Standards criteria for the protection of human health, against which impacts from the Proposed Development and road traffic are evaluated, are set out within Table 7A.1. The criteria are taken from the Environmental Standards contained within EPA's Air Dispersion Modelling from Industrial Installations Guidance Note (AG4) (EPA, 2019).
- 3.1.2 The Clean Air for Europe (CAFE) programme revisited the management of Air Quality within the EU and replaced the EU Framework Directive 96/62/EC (Council of European Communities, 1996), its associated Daughter Directives 1999/30/EC (Council of European Communities, 1999), 2000/69/EC (Council of European Communities, 2002), 2002/3/EC (Council of European Communities, 2002), and the Council Decision 97/101/EC (Council of European Communities, 1997) with a single legal act, the Ambient Air Quality and Cleaner Air for Europe Directive 2008/50/EC (Council of European Communities, 2008).
- 3.1.3 The Air Quality Directive is currently transposed into Irish legislation by the Air Quality Standards Regulations (S.I. 180 of 2011). These Limit Values are binding in the Republic of Ireland and have been set with the aim of avoiding, preventing or reducing harmful effects on human health and on the environment as a whole. The Directive also lists a number of Target Values.

| POLLUTANT         | SOURCE                         | CONCENTRATION<br>(µG/M <sup>3</sup> ) | MEASURED AS                                                          |
|-------------------|--------------------------------|---------------------------------------|----------------------------------------------------------------------|
|                   |                                | 40                                    | Annual Mean                                                          |
| NO <sub>2</sub>   | EU Air Quality Limit<br>Values | 200                                   | 1-hour mean, not<br>to be exceeded<br>more than 18<br>times per year |
|                   |                                | 40                                    | Annual Mean                                                          |
| PM <sub>10</sub>  | EU Air Quality Limit<br>Values | 50                                    | 24-hour mean, not<br>to be exceeded<br>more than 35<br>times a year  |
| PM <sub>2.5</sub> | EU Air Quality Limit<br>Values | 20                                    | Annual Mean                                                          |
| со                | EU Air Quality Limit<br>Values | 10,000                                | Maximum daily<br>running 8-hour<br>mean                              |

Table 7A.1: Environmental Standards for Air (for the Protection of Human Health)

#### 3.2 Assessment Criteria for Sensitive Ecological Receptors

3.2.1 The Republic of Ireland is bound by the terms of the European Birds and Habitats Directives and the Ramsar Convention. The Conservation of Habitats and Species Regulations 2010 provides for the protection of European sites created under these polices, i.e. Special Areas of Conservation (SACs) designated under the Habitats Directive, Special Protection Areas (SPAs) designated under the Birds Directive, and Ramsar Sites designated as wetlands of international importance under the Ramsar Convention. The 2010 Regulations apply specific provisions of the European Directives to SACs, SPAs, candidate SACs (cSACs) and proposed SPAs (pSPAs), which require them to be given special consideration and further assessment by any development which is likely to lead to a significant effect upon them.

- 3.2.2 The legislation concerning the protection and management of designated sites and protected species within the Republic of Ireland is set out within the provisions of the Wildlife Acts 1976 to 2021.
- 3.2.3 The impact of emissions from the Proposed Development on sensitive ecological receptors are quantified within this assessment in two ways:
  - as direct impacts arising due to increases in atmospheric pollutant concentrations; and
  - indirect impacts arising through deposition of acids and nutrient nitrogen to the ground surface.
- 3.2.4 The Critical Levels for the protection of vegetation and ecosystems are set out in Table 7A.2, and apply regardless of habitat type. These values have been adopted as the assessment criteria for the impact of the process on designated nature sites.

# Table 7A.2: Critical Level (CLe) Environmental Assessment Levels for Air (for the Protection of Designated Habitat Sites)

| POLLU-<br>TANT                           | SOURCE                         | CONCENTRATION<br>(µG/M <sup>3</sup> ) | MEASURED<br>AS | NOTES |
|------------------------------------------|--------------------------------|---------------------------------------|----------------|-------|
| NO <sub>x</sub> (as<br>NO <sub>2</sub> ) | EU Air Quality<br>Limit Values | 30                                    | Annual mean    | -     |

- 3.2.5 Critical Load criteria for the deposition of acids and nutrient nitrogen are dependent on the habitat type and species present and are specific to the sensitive receptors considered within the assessment. The Critical Loads are set out on the Air Pollution Information System website (Centre for Ecology and Hydrology (CEH), 2022). Although this website is UK based, the AG4 Guidance stipulates that Critical Loads for the equivalent type of habitats should be used.
- 3.2.6 The Critical Load criteria adopted for the sensitive ecological receptors considered by the assessment are presented in the model results section of this report.

# 4.0 METHODOLOGY

#### 4.1 Overview

- 4.1.1 This section describes the approach taken to the assessment of emissions associated with the operation of the Proposed Development. This has been broken down into four sub-sections.
  - Qualitative assessment of construction dust;
  - Modelling of combustion emissions from the stack; and
  - Modelling of construction phase road traffic emissions on local roads.
- 4.1.2 The outputs from the modelling of combustion emissions from the stack and road traffic have been used to determine the combined change in concentrations of NO<sub>2</sub>, PM<sub>10</sub> and PM<sub>2.5</sub> at a number of receptors located in close proximity to local roads. The approach taken to the prediction of impacts is determined later within this section of the report.

#### 4.2 Construction Dust Assessment

- 4.2.1 While part of the Site is existing hard standing, the movement and handling of soils and spoil during the Proposed Development and Overall Project construction activities is anticipated to lead to the generation of some short-term airborne dust. The occurrence and significance of dust generated by earth moving operations is difficult to estimate and depends heavily upon the meteorological and ground conditions at the time and location of the work within the Site, and the nature of the actual activity being carried out.
- 4.2.2 At present, there are no statutory Irish standards relating to the assessment or control of construction dust. Dust (including PM<sub>10</sub>) from construction will be considered using a risk-based screening assessment (Institute of Air quality Management (IAQM), 2023).
- 4.2.3 The emphasis of the regulation and control of construction dust is therefore through the adoption of good working practice on Site. It is intended that significant adverse environmental effects are avoided at the design stage and through embedded mitigation where possible, including the use of good working practices to minimise dust formation.
- 4.2.4 The IAQM provides guidance for good practice qualitative assessment of risk of dust emissions from construction and demolition activities (IAQM, 2023). The guidance considers the risk of dust emissions from unmitigated activities to cause human health (PM<sub>10</sub>) impacts, dust soiling impacts, and ecological impacts (such as physical smothering, and chemical impacts for example from deposition of alkaline materials). The appraisal of risk is based on the scale and nature of activities and on the sensitivity of receptors, and the outcome of the appraisal is used to determine the level of good practice mitigation required for adequate control of dust.

- 4.2.5 The following four potential activities have been screened as potentially significant, based on the nature of construction activities proposed as part of the Proposed Development (IAQM, 2023):
  - demolition (of buildings, roads or site clearance);
  - earthworks (spoil movement and stockpiling);
  - construction; and
  - track-out (HGV movements on unpaved roads and offsite mud on the highway).

#### Magnitude Definitions

- 4.2.6 The potential magnitude of dust emissions is categorised through consideration of the scale, duration and location of construction activities being carried out and is classified as Small, Medium or Large;
- 4.2.7 The magnitude of each activity is determined by professional judgment, but examples given in the IAQM guidance can help to make that judgment. These examples are as detailed in Table 7A.3 below.

| MAGNITUDE | DEMOLITION                                                                                                                                                                                                                     | EARTHWORKS                                                                                                                                                                | CONSTRUCTION                                                                                                                                  | TRACKOUT                                                                                                                                                                                           |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Large     | Total building<br>volume<br>>75,000 m <sup>3</sup> ,<br>potentially<br>dusty<br>construction<br>material (e.g.<br>concrete), on-<br>site crushing<br>and screening,<br>demolition<br>activities >12 m<br>above ground<br>level | Site area<br>>110,000 m <sup>2</sup><br>potentially dusty<br>soil type (e.g.<br>clay). >10 heavy<br>earth moving<br>vehicles at once,<br>bunds >6 m high,                 | Total building<br>volume >75,000<br>m <sup>3</sup> , on-site<br>concrete batching,<br>sandblasting                                            | >50 Heavy Duty<br>Vehicle (HDV)<br>(>3.5 tonne)<br>peak outward<br>movements per<br>day, potentially<br>dusty surface<br>material (e.g.<br>high clay<br>content),<br>unpaved road<br>length >100 m |
| Medium    | Total building<br>volume 12,000<br>m <sup>3</sup> – 75,000 m <sup>3</sup> ,<br>potentially<br>dusty<br>construction<br>material,<br>demolition<br>activities 6-12<br>m above<br>ground level                                   | Site area 18,000<br>$m^2 - 110,000 m^2$ ,<br>moderately dusty<br>soil type (e.g.<br>silt), 5 - 10<br>heavy earth<br>moving vehicles<br>at once, bunds 3-<br>6 metres high | Total building<br>volume 12,000 –<br>75,000 m <sup>3</sup> ,<br>potentially dusty<br>materials e.g.<br>concrete, on-site<br>concrete batching | 10 – 50 HDV<br>peak outward<br>movements per<br>day, moderately<br>dusty surface<br>material (e.g.<br>high clay<br>content),<br>unpaved road<br>length 50 – 100<br>metres                          |
| Small     | Total building<br>volume<br><12,000 m <sup>3</sup> ,<br>construction                                                                                                                                                           | Site area<br><18,000 m <sup>2</sup> ,<br>large grain soil<br>type (e.g. sand),<br><5 heavy earth                                                                          | Total building<br>volume <12,000<br>m <sup>3</sup> , low dust<br>potential<br>construction                                                    | <10 HDV peak<br>outward<br>movements per<br>day, surface<br>material low                                                                                                                           |

Table 7A.3: IAQM Examples of Definition of Magnitude of Construction Activities

| MAGNITUDE | DEMOLITION                                                                                                                                                                              | EARTHWORKS                                         | CONSTRUCTION                   | TRACKOUT                                                |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------|---------------------------------------------------------|
|           | material with<br>low potential for<br>dust release<br>(e.g. metal<br>cladding or<br>timber),<br>demolition<br>activities <6 m<br>above ground,<br>demolition<br>during wetter<br>months | moving vehicles<br>at once, bunds<br><3 metre high | materials e.g.<br>metal/timber | dust potential,<br>unpaved road<br>length <50<br>metres |

**Receptor Sensitivity Definitions** 

- 4.2.8 The Study Area for the assessment of construction dust has been applied, using criteria proposed within IAQM guidance (IAQM, 2023), and extends:
  - up to 250m beyond the Site boundary and 50m from the construction traffic route (up to 250m from the Site entrances), for human health receptors; and
  - up to 50m from the Site boundary and/ or construction traffic route (up to 250m from the Site entrances) for ecological receptors.
- 4.2.9 The assessment of construction dust has been made with respect to the receptor and area sensitivity definitions as outlined in Table 7A.4 to Table 7A.7 below. Sensitivity definitions have been made with reference to the IAQM guidance; receptors beyond 50 metres are defined as low sensitivity; ecological receptors (including statutory designations, and non-statutory ecological receptors of location importance such as county wildlife sites, national and local nature reserves) have not been included as there are no such sites within the screening distance.

| POTENTIAL DUST<br>EFFECT | HUMAN<br>PERCEPTION OF<br>DUST DEPOSITION<br>EFFECTS                                                                                                                       | PM₁₀ HEALTH<br>EFFECTS                                                                           | ECOLOGICAL<br>EFFECTS                                                                                                                 |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| High sensitivity         | Enjoy a high level of<br>amenity; appearance/<br>aesthetics/ value of<br>property would be<br>diminished by soiling;<br>receptor expected to<br>be present<br>continuously | Public present for<br>8 hours per day<br>or more, e.g.<br>residential,<br>schools, care<br>homes | Locations with an<br>international or national<br>designation and the<br>designated features<br>may be affected by dust<br>deposition |
| Moderate sensitivity     | Enjoy a reasonable<br>level of amenity;<br>appearance/<br>aesthetics/ value of<br>property could be                                                                        | Only workforce<br>present (no<br>residential or high<br>sensitivity<br>receptors) 8              | Locations where there<br>is a particularly<br>important plant species,<br>where dust sensitivity is<br>uncertain or unknown           |

| POTENTIAL DUST<br>EFFECT | HUMAN<br>PERCEPTION OF<br>DUST DEPOSITION<br>EFFECTS                                                                                                                                                                                                                             | PM₁₀ HEALTH<br>EFFECTS                                                   | ECOLOGICAL<br>EFFECTS                                                                                      |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
|                          | diminished by soiling;<br>receptor not expected<br>to be present<br>continuously                                                                                                                                                                                                 | hours per day or<br>more                                                 | or locations with a<br>national designation<br>where the features may<br>be affected by dust<br>deposition |
| Low sensitivity          | Enjoyment of amenity<br>not reasonably<br>expected; appearance/<br>aesthetics/ value of<br>property not diminished<br>by soiling; receptors<br>are transient / present<br>for limited period of<br>time; e.g. playing<br>fields, farmland,<br>footpaths, short term<br>car parks | Transient human<br>exposure, e.g.<br>footpaths, playing<br>fields, parks | Locations with a local<br>designation which may<br>be affected by dust<br>deposition                       |

4.2.10 Distances are measured from source to receptor in bands of less than 20 metres, less than 50 metres, less than 100 metres and less than 250 metres for demolition, earthworks and construction. For trackout the receptor distance measured from receptor to trackout route (up to 50 metres) and up to 250 metres from the Site exit. These distances bands have been applied in Table 7A.5 and Table 7A.6. For ecological impacts the distance bands are as set out in Table 7A.7.

# Table 7A.5: Sensitivity of the Area to Dust Deposition Effects on People and Property,With Less than 100 Properties Present

| RECEPTOR    | DIS    | DISTANCE FROM THE SOURCE (M) |        |      |  |
|-------------|--------|------------------------------|--------|------|--|
| SENSITIVITY | <20    | <50                          | <100   | <250 |  |
| High        | High   | High                         | Medium | Low  |  |
| Moderate    | Medium | Low                          | Low    | Low  |  |
| Low         | Low    | Low                          | Low    | Low  |  |

| Table 7A.6: Sensitivity of the Area to Human Health Impacts, with Less than 100                            |
|------------------------------------------------------------------------------------------------------------|
| Properties Present, where the Annual Mean PM <sub>10</sub> Concentration is less than 24 µg/m <sup>3</sup> |

| RECEPTOR SENSITIVITY                                                                     | DISTAN | DISTANCE FROM THE SOURCE (M) |      |      |  |
|------------------------------------------------------------------------------------------|--------|------------------------------|------|------|--|
|                                                                                          | <20    | <50                          | <100 | <250 |  |
| High (where the annual mean<br>PM <sub>10</sub> concentration <24<br>µg/m <sup>3</sup> ) | Medium | Low                          | Low  | Low  |  |
| Medium (where the annual mean PM <sub>10</sub> concentration <24 µg/m <sup>3</sup> )     | Low    | Low                          | Low  | Low  |  |

| RECEPTOR SENSITIVITY | DISTANCE FROM THE SOURCE (M) |     |      |      |
|----------------------|------------------------------|-----|------|------|
|                      | <20                          | <50 | <100 | <250 |
| Low                  | Low                          | Low | Low  | Low  |

#### Table 7A.7: Sensitivity of the Area to Ecological Impacts

| RECEPTOR SENSITIVITY | DISTANCE FROM SOURCE (M) |        |  |
|----------------------|--------------------------|--------|--|
|                      | <20                      | <50    |  |
| High                 | High                     | Medium |  |
| Medium               | Medium                   | Low    |  |
| Low                  | Low                      | Low    |  |

#### **Risk Definitions**

4.2.11 The potential risks from emissions from unmitigated construction activities have been defined with reference to the magnitude of the potential emission and the sensitivity of the highest receptor(s) within the effect area, as summarised in Table 7A.8 below.

#### Table 7A.8: Classification of Risk of Unmitigated Impacts

| AREA OF SENSITIVITY TO |             | MAGNITUDE   |             |
|------------------------|-------------|-------------|-------------|
| ACTIVITY               | LARGE       | MEDIUM      | SMALL       |
| Earthworks             | •           |             |             |
| High                   | High risk   | Medium risk | Low risk    |
| Medium                 | Medium risk | Medium risk | Low risk    |
| Low                    | Low risk    | Low risk    | Negligible  |
| Construction           |             |             |             |
| High                   | High risk   | Medium risk | Low risk    |
| Medium                 | Medium risk | Medium risk | Low risk    |
| Low                    | Low risk    | Low risk    | Negligible  |
| Trackout               |             |             |             |
| High                   | High risk   | Medium risk | Low risk    |
| Medium                 | Medium risk | Low risk    | Negligible  |
| Low                    | Low risk    | Low risk    | Negligible  |
| Demolition             |             |             |             |
| High                   | High risk   | Medium risk | Medium risk |
| Medium                 | High risk   | Medium risk | Low risk    |
| Low                    | Medium risk | Low risk    | Negligible  |

#### 4.3 Modelling of Combustion Emissions from the Stacks

**Dispersion Model Selection** 

4.3.1 The assessment of emissions from the Proposed Development stack has been undertaken using the latest version of ADMS 6 (V6.0.0.1). ADMS is a modern

dispersion model that has an extensive published validation history. This model has been extensively used throughout Ireland to demonstrate regulatory compliance and is listed as a suitable model in the AG4 guidance.

4.3.2 The assessment of emissions from road traffic associated with the Proposed Development has used the latest version of ADMS-Roads (V5.0) to quantify pollution levels at selected receptors. ADMS-Roads is a modern dispersion model that has a published track record of use for the assessment of local air quality impacts, including model validation and verification studies.

#### Modelled Scenarios

- 4.3.3 Four emissions scenarios have been modelled, as outlined below:
  - Full Load continuous operation of both the CCGT and OCGT with auxiliary equipment running normally, running on natural gas fuel;
  - Backup operation of both the CCGT and OCGT, running on backup fuel (emergency full load operation);
  - Low Load of both the CCGT and OCGT with auxiliary equipment running normally, running on natural gas fuel;
  - A cumulative impact assessment including the Proposed Development and LEL Castlelost.
- 4.3.4 The dispersion modelling undertaken in the assessment of emissions from the above scenarios are:
  - modelling of maximum ground-level impacts from the Full Load scenarios at a range of release heights, between 25m and 70m above ground level, in order to evaluate the effect of increasing effective release height on dispersion;
  - modelling of impacts on a variable resolution receptor grid and at discrete sensitive human receptors for all pollutants, at a release height of 60m above ground level for the CCGT and 45m above ground level for the OCGT; and
  - modelling of impacts at selected sensitive ecological receptors, at a release height of 60m above ground level for the CCGT and 45m above ground level for the OCGT.

#### Cumulative Assessment Considerations

4.3.5 Following the EPA's AG4 Guidance Note (EPA, 2020), a cumulative impact assessment has been undertaken. Appendix E of the AG4 guidance lays out the methodology required to determine whether a nearby existing source needs to be included in the air dispersion modelling assessment and if so which pollutants should be included. It does state that the need for such an assessment is expected to be limited, as is the case here. Aside from the fact that only industrial installations with a high emission potential (>100 or 250 tonnes/annum depending on the type) need to be considered, it also states that they only need to be included if they are located in an area where emissions from the Proposed Development are above 5% of the Air Quality Standard (AQS), when operating in normal conditions, i.e. with the primary fuel. As shown in figures 7A.4 to 7A.6 for NO<sub>2</sub>

and CO, there are no such sources within the area where the PC is above 5% of the AQS for each modelled pollutant, therefore there is no need to include any existing sources in the assessment.

4.3.6 The AG4 guidance (EPA, 2020) doesn't include a methodology for consented but not yet operating facilities, that will not be included in the background but will probably be operating at the same time as the Proposed Development. As a conservative assumption, the decision was made to include emissions from LEL Castlelost as it falls into that category and is located less than 10 km away. Results included the LEL Castlelost facility are presented throughout this report within the cumulative assessment sections.

#### Model Inputs

4.3.7 The general model conditions used in the assessment are summarised in Table 7A.9. Other more detailed data used to model the dispersion of emissions is considered below. All coordinates are displayed in the ITM coordinate system.

| VARIABLE                                                                                     | INPUT                                                                                                                                                                                                                                                                                                       |
|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Surface roughness at source                                                                  | 0.2                                                                                                                                                                                                                                                                                                         |
| Surface roughness at meteorological site                                                     | 0.3                                                                                                                                                                                                                                                                                                         |
| Receptors                                                                                    | Selected discrete receptors                                                                                                                                                                                                                                                                                 |
|                                                                                              | Nested receptor grid, variable spacing                                                                                                                                                                                                                                                                      |
| Receptor location                                                                            | X,Y co-ordinates determined by GIS                                                                                                                                                                                                                                                                          |
|                                                                                              | z = 1.5 m for residential receptors                                                                                                                                                                                                                                                                         |
|                                                                                              | z = 0 m for ecological receptors                                                                                                                                                                                                                                                                            |
| Source location                                                                              | X,Y co-ordinates given by Fichtner                                                                                                                                                                                                                                                                          |
| Emissions                                                                                    | IED emission limits, BAT-AEL values or given                                                                                                                                                                                                                                                                |
|                                                                                              | by Fichtner                                                                                                                                                                                                                                                                                                 |
|                                                                                              | CCGT – >500MW turbine emitting through 1                                                                                                                                                                                                                                                                    |
|                                                                                              | Stack.                                                                                                                                                                                                                                                                                                      |
|                                                                                              | OCGT – >100MW turbine emitting through 1                                                                                                                                                                                                                                                                    |
| Sources                                                                                      | Stack                                                                                                                                                                                                                                                                                                       |
|                                                                                              | Auxiliary Boiler – 7.5 MW boiler                                                                                                                                                                                                                                                                            |
|                                                                                              |                                                                                                                                                                                                                                                                                                             |
|                                                                                              |                                                                                                                                                                                                                                                                                                             |
| Matagralagical data                                                                          |                                                                                                                                                                                                                                                                                                             |
| Meteorological data                                                                          |                                                                                                                                                                                                                                                                                                             |
| Terrain data                                                                                 |                                                                                                                                                                                                                                                                                                             |
|                                                                                              |                                                                                                                                                                                                                                                                                                             |
|                                                                                              |                                                                                                                                                                                                                                                                                                             |
|                                                                                              | •                                                                                                                                                                                                                                                                                                           |
| Meteorological data<br>Terrain data<br>Buildings that may cause building downwash<br>effects | AGI and GRF heaters – 5*610 kW dew point<br>heaters<br>% LEL Castlelost OCGT stacks<br>5 years of meteorological data, Mullingar<br>Meteorological Station (2018 – 2022)<br>Flat terrain<br>The main buildings on site in the immediate<br>vicinity of the stack were modelled, as shown<br>in Table 7A. 18 |

#### Table 7A.9: General ADMS 5 Model Conditions

#### **Emissions Data**

4.3.8 For the CCGT stack, the height considered to represent BAT based on the range of stack heights assessed is 60 metres above ground level, with an internal diameter of 8.2 metres. For the OCGT stack, the height considered to represent BAT based on the range of stack heights assessed is 45 metres above ground level, with an internal diameter of 5 metres.

- 4.3.9 For other smaller sources, the stack height has been provided by Fichner, as any variation would not be significant in terms of air quality impacts.
- 4.3.10 The physical properties of each combustion emission source, as represented within the model, are presented in Table 7A.10 and Table 7A.11.
- 4.3.11 The position of the stacks within the modelled domain is illustrated in Figure A7.1 of Annex A to this report.

| PARAMETER                                                                      | UNIT       | FULL LOAD         | LOW LOAD          | BACKUP            | AUXILIARY<br>BOILER |
|--------------------------------------------------------------------------------|------------|-------------------|-------------------|-------------------|---------------------|
| Fuel                                                                           |            | Gas               | Gas               | Backup Fuel       | Gas                 |
| Stack position                                                                 | (ITM)<br>m | 649618,<br>738365 | 649618,<br>738365 | 649618,<br>738365 | 649618,<br>738365   |
| Stack release<br>height                                                        | М          | 60                | 60                | 60                | 60                  |
| Effective<br>internal stack<br>diameter                                        | М          | 8.2               | 8.2               | 8.2               | 0.6                 |
| Flue<br>temperature                                                            | °C         | 87.8              | 74.0              | 87.0              | 170.0               |
| Flue O <sub>2</sub><br>content (dry)                                           | %          | 11.03             | 12.12             | 11.18             | 3.0                 |
| Stack flow<br>(actual)                                                         | kg/s       | 758               | 486               | 760               | 3.06                |
| Stack flow at<br>reference<br>conditions<br>(NTP, dry,<br>11% O <sub>2</sub> ) | Nm³/s      | 798               | 453               | 826               | 2.0                 |

| Table 7A.10: Sources Pro  | nortios - CCGT | and Auxiliary Boiler |  |
|---------------------------|----------------|----------------------|--|
| Table TA. IV. Sources Fit | perces - ccor  | anu Auxinary Doner   |  |

| PARAMETER                               | UNIT       | FULL<br>LOAD      | LOW<br>LOAD       | BACKUP            | DEW POINT<br>HEATER (PER<br>UNIT)                     | CASTLELOST<br>OCGTS (PER<br>UNIT)                                                      |
|-----------------------------------------|------------|-------------------|-------------------|-------------------|-------------------------------------------------------|----------------------------------------------------------------------------------------|
| Fuel                                    |            | Gas               | Gas               | Backup<br>Fuel    | Gas                                                   | Gas                                                                                    |
| Stack position                          | (ITM)<br>m | 649497,<br>738197 | 649497,<br>738197 | 649497,<br>738197 | AGI:<br>649274,738355<br>GRF centre:<br>649302,738373 | 645011, 738903<br>645018, 738881<br>645024, 738861<br>645030, 738841<br>645036, 738820 |
| Stack release<br>height                 | М          | 45                | 45                | 45                | 7                                                     | 25                                                                                     |
| Effective<br>internal stack<br>diameter | М          | 5.0               | 5.0               | 5.0               | 0.2                                                   | 4.5                                                                                    |
| Flue<br>temperature                     | °C         | 435.7             | 405.7             | 437.7             | 170.0                                                 | 727.15                                                                                 |
| Flue O <sub>2</sub><br>content (dry)    | %          | 15.0%             | 15.0%             | 15.0%             | NA                                                    | NA                                                                                     |
| Stack flow (actual)                     | kg/s       | 351.4             | 221.5             | 347.7             | 0.306*                                                | 375.66*                                                                                |

| Stack flow at<br>reference<br>conditionsNm³/s276(NTP, dry, | LOAD | BACKUP | HEATER (PER<br>UNIT) | OCGTS (PER<br>UNIT) |
|------------------------------------------------------------|------|--------|----------------------|---------------------|
| 11% O <sub>2</sub> )                                       | 129  | 286    | NA                   | NA                  |

- 4.3.12 The modelled pollutant emission rates (in g/s) are determined by the daily average BAT-AEL values set out within the BREF or Emission Limit Values (ELVs) set out within the IED. The emissions limits assumed to apply to the Proposed Development are shown in Table 7A.12.
- 4.3.13 Pollutant mass emission rates from the combustion process associated with the Proposed Development (in g/s) have been calculated by multiplying the daily average and half hour average ELVs by the volumetric flow rate at reference conditions. The pollutant mass emission rates from the stacks, as used within the dispersion modelling assessment, are presented in Table 7A.13 and Table 7A.14.
- 4.3.14 For the normal operation scenario, this assessment assumes that the Proposed Development would operate at continuous design load (8,760 hours per year). No time-based variation in stack emissions has therefore been accounted for within the model. For the assessment of short-term impacts, emissions have been modelled at the maximum emission rate, reflecting the assumption that it is not possible to predict when the operational hours may be.

Table 7A.12: Air Emission Limit Values (ELVs) as Specified in the Industrial Emission Directive (IED, 2010/75/EU) and the BAT-AELs (Official Journal of the European Union, 2019) – Natural Gas

|            |                                       | EMISSION LIMIT (mg/Nm <sup>3</sup> )   |                                     |  |  |
|------------|---------------------------------------|----------------------------------------|-------------------------------------|--|--|
| ITEM       | POLLUTANT                             | HALF-HOUR<br>AVERAGE (BASED<br>ON IED) | DAILY AVERAGE<br>(BASED ON BAT-AEL) |  |  |
| OCGT (new) | NO <sub>X</sub> (as NO <sub>2</sub> ) | 50                                     | 35                                  |  |  |
|            | CO                                    | 40                                     | NA                                  |  |  |
| CCGT (new) | NO <sub>X</sub> (as NO <sub>2</sub> ) | 40                                     | 30                                  |  |  |
|            | CO                                    | 30                                     | NA                                  |  |  |
|            | NH <sub>3</sub>                       | 3 (for SCR)                            | NA                                  |  |  |

| able 7A.13: Pollutant Emission Rates for natural gas sources |
|--------------------------------------------------------------|
|--------------------------------------------------------------|

| POLLUTANT          | UNIT | CCGT<br>FULL<br>LOAD | CCGT<br>LOW<br>LOAD | OCGT<br>FULL<br>LOAD | OCGT<br>LOW<br>LOAD | AUXILIA<br>RY<br>BOILER | DEW<br>POINT<br>HEATER<br>(UNIT) | LEL<br>CASTL<br>ELOST<br>OCGT |
|--------------------|------|----------------------|---------------------|----------------------|---------------------|-------------------------|----------------------------------|-------------------------------|
| NOx Long-<br>term  | g/s  | 23.9                 | NA                  | 9.7                  | NA                  | 0.20                    | 0.0053                           | 4.42                          |
| NOx Short-<br>term | g/s  | 31.9                 | 18.1                | 13.8                 | 6.4                 | 0.20                    | 0.0053                           | 4.42                          |
| CO Short-<br>term  | g/s  | 23.9                 | 13.6                | 11.0                 | 5.2                 | NA                      | NA                               | 5.05                          |

| POLLUTANT         | UNIT | CCGT<br>FULL<br>LOAD | CCGT<br>LOW<br>LOAD | OCGT<br>FULL<br>LOAD | OCGT<br>LOW<br>LOAD | AUXILIA<br>RY<br>BOILER | DEW<br>POINT<br>HEATER<br>(UNIT) | LEL<br>CASTL<br>ELOST<br>OCGT |
|-------------------|------|----------------------|---------------------|----------------------|---------------------|-------------------------|----------------------------------|-------------------------------|
| NH₃ Long-<br>term | g/s  | 2.4                  | NA                  | NA                   | NA                  | NA                      | NA                               | NA                            |

Table 7A.14: Pollutant Emission Rates for Backup Fuel sources

| POLLUTANT                   | UNIT | CCGT  | OCGT |
|-----------------------------|------|-------|------|
| NOx Long-term               | g/s  | NA    | NA   |
| NOx Short-term              | g/s  | 206.4 | 71.5 |
| CO Short-term               | g/s  | 82.6  | 28.6 |
| PM <sub>10</sub> Short-term | g/s  | 8.3   | 2.9  |

Modelled Domain – Discrete Sensitive Human Receptors

- 4.3.15 Ground-level concentrations of the modelled pollutants relevant to human health have been predicted at discrete air quality sensitive receptors, as listed in Table 7A.15. The locations of these sensitive human receptors are also shown in Figure 7A.1 of Annex A to this Appendix. The residential receptors have been selected to be representative of residential dwellings in the area around the Proposed Development and Overall Project.
- 4.3.16 A number of the sensitive human receptors are also in close proximity to traffic routes which would experience changes to vehicle flows during the construction of the Proposed Development and Overall Project. The residential receptors which are located in close proximity to traffic routes have been specified in the table below. At these locations, an assessment has been made of the effect of emissions from construction traffic on local concentrations of NO<sub>2</sub>, PM<sub>10</sub> and PM<sub>2.5</sub>.
- 4.3.17 The flagpole height of all of the sensitive human receptors listed in Table 7A.15 has been set within the model at 1.5m above ground level.

|     |                                              |                  | GRID REFERENCE |        | DIST                 | ASSESSED                                                            |
|-----|----------------------------------------------|------------------|----------------|--------|----------------------|---------------------------------------------------------------------|
| ID  | RECEPTOR NAME                                | RECEPTOR<br>TYPE | X              | Y      | FROM<br>STACK<br>(M) | FOR<br>IMPACTS<br>FROM:                                             |
| R01 | Property on the<br>R400 in<br>Rochfortbridge | Residential      | 646674         | 740506 | 3641                 | Operational,<br>Construction<br>Dust and<br>Construction<br>Traffic |
| R02 | Property on the<br>R400 south of M6          | Residential      | 647811         | 739607 | 2193                 | Operational,<br>Construction<br>Dust and<br>Construction<br>Traffic |

Table 7A.15: Modelled Domain - Selected Discrete Human Receptor Locations

|     |                                                        | GRID REFERENCE   |        | FERENCE | DIST                 | ASSESSED                                                            |
|-----|--------------------------------------------------------|------------------|--------|---------|----------------------|---------------------------------------------------------------------|
| ID  | RECEPTOR NAME                                          | RECEPTOR<br>TYPE | X      | Y       | FROM<br>STACK<br>(M) | FOR<br>IMPACTS<br>FROM:                                             |
| R03 | Property on the<br>R400 south of M6                    | Residential      | 647896 | 739416  | 2013                 | Operational,<br>Construction<br>Dust and<br>Construction<br>Traffic |
| R04 | Property on the<br>R400 south of site<br>entrance      | Residential      | 650417 | 737275  | 1302                 | Operational<br>and<br>Construction<br>Traffic                       |
| R05 | Property on the<br>R400 near Yellow<br>River           | Residential      | 651734 | 736015  | 3125                 | Operational<br>and<br>Construction<br>Traffic                       |
| R06 | Property on the<br>R400 north of<br>Rhode              | Residential      | 652790 | 735094  | 4524                 | Operational<br>and<br>Construction<br>Traffic                       |
| R07 | Property on L1010<br>Togher, west<br>Rhode             | Residential      | 652261 | 732837  | 6031                 | Operational                                                         |
| R08 | Property on a farm<br>north of Croghan                 | Residential      | 647987 | 736196  | 2507                 | Operational                                                         |
| R09 | Property on a farm<br>Rathconnel                       | Residential      | 653895 | 740026  | 4588                 | Operational                                                         |
| R10 | Property in<br>Hardwood                                | Residential      | 650972 | 742398  | 4254                 | Operational                                                         |
| R11 | Property on<br>Rahanine Rd                             | Residential      | 647852 | 740562  | 2819                 | Operational                                                         |
| R12 | Property on a farm, south of M6                        | Residential      | 646923 | 739040  | 2709                 | Operational,<br>Construction<br>Dust                                |
| R13 | Property on the L1009                                  | Residential      | 651418 | 737943  | 1848                 | Operational                                                         |
| R14 | Property in<br>Farthingstown,<br>south of M6           | Residential      | 646521 | 739046  | 3094                 | Construction<br>Traffic                                             |
| S01 | Rhode Community<br>Pre-school                          | School           | 653135 | 733457  | 5975                 | Operational                                                         |
| S02 | Rhode N.S. School                                      | School           | 653421 | 732449  | 6959                 | Operational                                                         |
| S03 | Scoil Bhride,<br>Croghan P.S.,<br>School               | School           | 648075 | 732508  | 5864                 | Operational                                                         |
| S04 | St Joseph's<br>Secondary,<br>Rochfortbridge,<br>School | School           | 646457 | 740659  | 3906                 | Operational                                                         |

|     |                                                   |                  | GRID REFERENCE |        | DIST                 | ASSESSED                |
|-----|---------------------------------------------------|------------------|----------------|--------|----------------------|-------------------------|
| ID  | RECEPTOR NAME                                     | RECEPTOR<br>TYPE | X              | Y      | FROM<br>STACK<br>(M) | FOR<br>IMPACTS<br>FROM: |
| S05 | Miltownpass<br>National School                    | School           | 649972         | 743861 | 5507                 | Operational             |
| S06 | Stonebridge Park<br>Playschool,<br>Rochfortbridge | School           | 647048         | 740980 | 3667                 | Operational             |

#### Modelled Domain – Discrete Sensitive Ecological Receptors

- 4.3.18 In accordance with the EPA's AG4 guidance, the impacts associated with emissions from the combustion process on statutory sensitive ecological sites have been quantified. The assessment has considered National Heritage Areas (NHAs) within 2 km and European designated sites within 15 km of the Proposed Development and Overall Project's sources for Operational impacts and within 200m for Construction impacts, as recommended by the risk assessment guidance.
- 4.3.19 Ground-level concentrations of the modelled pollutants relevant to sensitive ecological receptors have been predicted at locations listed in Table 7A.16. The locations of these receptors are also shown in Figure A7.2 of Annex A to this Appendix.
- 4.3.20 For sensitive ecological receptors, the flagpole height has been set within the model at ground level (z=0m).

|     |                                        | RECEPTOR   | GRID<br>CEPTOR REFERENCE |            | DIST<br>FROM | ASSESSED<br>FOR  |
|-----|----------------------------------------|------------|--------------------------|------------|--------------|------------------|
| ID  | RECEPTOR NAME                          | TYPE       | Х                        | Y          | STACK<br>(M) | IMPACTS<br>FROM: |
| E1  | Raheenmore Bog<br>SAC                  | Ecological | 644515                   | 73293<br>7 | 7246         | Operational      |
| E2a | Split Hills and Long<br>Hill Esker SAC | Ecological | 638528                   | 73535<br>7 | 11331        | Operational      |
| E2b | Split Hills and Long<br>Hill Esker SAC | Ecological | 638112                   | 73610<br>3 | 11577        | Operational      |
| E2c | Split Hills and Long<br>Hill Esker SAC | Ecological | 636231                   | 73763<br>7 | 13278        | Operational      |
| E3a | Lough Ennell SAC                       | Ecological | 638953                   | 74256<br>6 | 11414        | Operational      |
| E3b | Lough Ennell SAC<br>and SPA            | Ecological | 639983                   | 74475<br>8 | 11558        | Operational      |
| E3c | Lough Ennell SAC                       | Ecological | 641577                   | 74489<br>6 | 10360        | Operational      |
| E3d | Lough Ennell SAC                       | Ecological | 641495                   | 74615<br>0 | 11252        | Operational      |
| E3e | Lough Ennell SAC<br>and SPA            | Ecological | 642105                   | 74890<br>7 | 12945        | Operational      |

Table 7A.16: Modelled Domain – Ecological Receptor Locations

| ID |                        | RECEPTOR   | GRID<br>OR REFERENCE |            | DIST<br>FROM | ASSESSED<br>FOR  |
|----|------------------------|------------|----------------------|------------|--------------|------------------|
| U  | RECEPTOR NAME          | TYPE       | X                    | Y          | STACK<br>(M) | IMPACTS<br>FROM: |
| E4 | Mount Hevey Bog<br>SAC | Ecological | 659975               | 74775<br>8 | 13981        | Operational      |
| E5 | Wooddown Bog<br>SAC    | Ecological | 648907               | 75366<br>7 | 15318        | Operational      |

#### Modelled Domain – Receptor Grid

- 4.3.21 Emissions from the stack have also been modelled on a receptor grid of variable spacing, in order to:
  - determine the location and magnitude of maximum ground level impacts; and
  - enable the generation of pollutant isopleth plots.
- 4.3.22 The dispersion model output is reported at specific receptors and as a nested grid of values. The inner grid extends 2 km from the stack at a resolution of 25m, the middle grid 5 km at a resolution of 100m, and the outer grid 20 km at a resolution of 500m. Details of the receptor grid are summarised in Table 7A.17. All gridded model outputs are reported at 0m above ground level (z=0m).

| GRID SPACING (M) | DIMENSIONS (M)  | ITM REFERENCE OF THE<br>CENTRE OF THE SQUARES |
|------------------|-----------------|-----------------------------------------------|
| 20               | 4000 x 4000     |                                               |
| 100              | 10,000 x 10,000 | 649618, 738365                                |
| 500              | 40,000 x 40,000 |                                               |

Table 7A. 17: Modelled Domain - Receptor Grid

<u>Terrain</u>

4.3.23 The Proposed Development is situated 3km from Rochfortbridge village. The area in general is generally flat with some very small gradients and changes in ground height. The AG4 Guidance states that "Terrain downwash is defined by the USEPA as occurring when terrain features are greater than 40 % of the Good Engineering Practice (GEP) stack height within 800m of the stack". This criterion allows the need to include terrain in the model to be screened out.

#### Meteorological Data

- 4.3.24 Actual measured hourly-sequential meteorological data is available for input into dispersion models, and it is important to select data as representative as possible for the development modelled. This is usually achieved by selecting a meteorological station as close to the Site as possible, although other stations may be used if the local terrain and conditions vary considerably, or if the station does not provide sufficient data.
- 4.3.25 The meteorological site that was selected for the assessment is Mullingar Meteorological Station, located approximately 20 km north north-west of the Site, at a flat field in a principally agricultural area, and therefore a surface roughness of 0.3m (representative of an agricultural area) has been selected for the meteorological site.
- 4.3.26 The modelling for this assessment has utilised 5 years of meteorological data for the period 2018 – 2022. Wind roses for each of the years within this period are shown in Figure 7A.8.

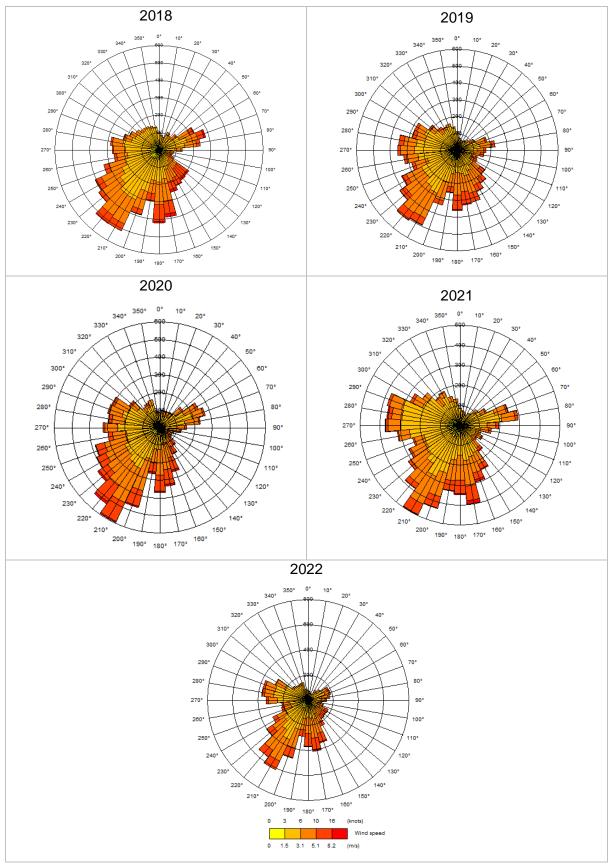



Figure 7A. 8: Wind roses for Gurteen, 2018 to 2022

#### **Building Downwash Effects**

- 4.3.27 The buildings and structures that make up the Proposed Development and Overall Project have the potential to affect the dispersion of emissions from the stacks. The ADMS building effects module has therefore been used to incorporate building downwash effects as part of the modelling. Buildings greater than one third of the range of stack heights modelled have been included within the modelling assessment.
- 4.3.28 Structures associated with the Proposed Development and Overall Project that are considered to be of sufficient height and volume to potentially impact on the dispersion of emissions from the Proposed Development stacks include the CCGT structures, including the cooling system, the OCGT structures, various tanks and separate buildings. The heights for these buildings were calculated from cross sections produced by Fichtner Consulting. Some buildings have a sloping roof but, as ADMS software is unable take that into account, the highest point of each roofs has been used as a most conservative option, as it increases the downwash effect.

| MAIN<br>STRUCTURE<br>FOR | STRUCTURE    | SHAPE       | X (M ITM) | Y (M ITM) | HEIGHT<br>(M) | LENGTH/<br>DIAM (M) | WIDTH<br>(M) | ANGLE<br>(°) |
|--------------------------|--------------|-------------|-----------|-----------|---------------|---------------------|--------------|--------------|
|                          | TurbineHall1 | Rectangular | 649543    | 738333    | 30            | 80                  | 49           | 67           |
|                          | TurbineHall2 | Rectangular | 649597    | 738356    | 40            | 35                  | 30           | 67           |
| CCGT                     | Inlet        | Rectangular | 649552    | 738372    | 34            | 10                  | 16           | 67           |
|                          | TurbineHall3 | Rectangular | 649621    | 738339    | 15            | 14                  | 19           | 67           |
|                          | Cooling      | Rectangular | 649443    | 738327    | 32            | 88                  | 51           | 67           |
| OCGT                     | OCGT1        | Rectangular | 649518    | 738206    | 13            | 20                  | 7            | 67           |
|                          | OCGT2        | Rectangular | 649477    | 738189    | 13            | 20                  | 7            | 67           |
|                          | Building1    | Rectangular | 649461    | 738258    | 12            | 77                  | 23           | 67           |
|                          | Building2    | Rectangular | 649651    | 738367    | 10            | 19                  | 40           | 67           |
| Other                    | Building3    | Rectangular | 649376    | 738235    | 10            | 24                  | 54           | 67           |
|                          | Tank1        | Circular    | 649647    | 738403    | 15            | 18                  | 18           | 0            |
|                          | Tank2        | Circular    | 649676    | 738393    | 15            | 18                  | 18           | 0            |
|                          | Tank3        | Circular    | 649611    | 738258    | 22            | 22                  | 22           | 0            |
|                          | Tank4        | Circular    | 649580    | 738245    | 22            | 22                  | 22           | 0            |

4.3.29 Parameters for these structures are displayed in Table 7A, 18,

4.3.30 The local area upwind and downwind of the site is relatively flat, predominantly agricultural in all directions. A surface roughness of 0.3m, corresponding to the maximum value associated with agricultural areas, has therefore been selected to represent the local terrain.

| .0.20 | i ulullo |          | 11000  | 011 001 01 00 | aro   | alopiayoa in   |      |
|-------|----------|----------|--------|---------------|-------|----------------|------|
|       | Table 74 | 19. Ctru | oturos | Incorporato   | d int | o tha Madallin | mont |

NO<sub>X</sub> to NO<sub>2</sub> Conversion

4.3.31 Emissions of nitrogen oxides from industrial point sources are typically dominated by nitric oxide (NO), with emissions from combustion sources typically in the ratio of nitric oxide to nitrogen dioxide of 9:1. However, it is nitrogen dioxide that has specified Environmental Standards due to its potential impact on human health. In the ambient air, nitric oxide is oxidised to nitrogen dioxide by the ozone present, and the rate of oxidation is dependent on the relative concentrations of nitric oxide and ozone in the ambient air.

4.3.32 For the purposes of detailed modelling, and in accordance with AG4 Guidance it is assumed that 100% of nitric oxide emitted from stacks is oxidised to nitrogen dioxide in the long term and 50% of the emitted nitric oxide is oxidised to nitrogen dioxide in the local vicinity of the Proposed Development in the short-term.

Calculation of Deposition at Sensitive Ecological Receptors

- 4.3.33 The deposition of nutrient nitrogen and acid at sensitive ecological receptors is calculated, using the modelled process contribution predicted at the receptor points. The deposition rates are determined using conversion rates and factors contained within AG4 Guidance, which account for variations deposition mechanisms in different types of habitat.
- 4.3.34 The conversion rates and factors used in the assessment are detailed in Table 7A.19 and Table 7A.20.

| POLLUTANT DEPOSITION<br>VELOCITY<br>GRASSLAND<br>(M/S) |        | DEPOSITION<br>VELOCITY<br>FORESTS (M/S) | CONVERSION<br>FACTOR<br>(µG/M³/S TO<br>KG/HA/YR) |
|--------------------------------------------------------|--------|-----------------------------------------|--------------------------------------------------|
| NO <sub>X</sub> as NO <sub>2</sub>                     | 0.0015 | 0.003                                   | 96                                               |
| NH <sub>3</sub>                                        | 0.02   | 0.03                                    | 259.7                                            |

#### Table 7A.19: Conversion Factors – Calculation of Nutrient Nitrogen Deposition

| Table 7A.20: Conversion Factors - | Calculation of Acid Deposition |
|-----------------------------------|--------------------------------|
|                                   |                                |

| POLLUTANT       | DEPOSITION<br>VELOCITY<br>GRASSLANDS<br>(M/S) | DEPOSI-<br>TION<br>VELOCITY<br>FORESTS<br>(M/S) | CONVER-SION<br>FACTOR<br>(µG/M³/S TO<br>KG/HA/YR) | CONVER-SION<br>FACTOR<br>(KG/HA/YR TO<br>KEQ/HA/YR) |
|-----------------|-----------------------------------------------|-------------------------------------------------|---------------------------------------------------|-----------------------------------------------------|
| NO <sub>2</sub> | 0.0015                                        | 0.003                                           | 96                                                | 0.0714                                              |
| NH <sub>3</sub> | 0.02                                          | 0.03                                            | 259.7                                             | 0.0714                                              |

#### Specialised Model Treatments

- 4.3.35 For the assessment of impacts on human health receptors, emissions have been modelled such that they are not subject to dry and wet deposition or depleted through chemical reactions. The assumption of continuity of mass is likely to result in an over-estimation of impacts at receptors, and therefore is considered to be conservative.
- 4.3.36 For the assessment of impacts on ecological receptors, emissions have been modelled such that they are subject to dry, but not wet, deposition, and not depleted through chemical reactions. Modelling of dry deposition only has been undertaken as wet deposition is not considered to be significant if sulphur and other acidic pollutants are not present in the plume (IAQM, 2020). The input parameters were chosen following the ADMS 6 User Guide recommendations for NOx and NH<sub>3</sub> (CERC, 2023).

# 4.4 Modelling of Emissions from Road Traffic

#### Modelled Scenarios

- 4.4.1 Quantitative assessment of the impact of exhaust emissions from additional road traffic has been undertaken, in order to assess the change in air quality statistics at sensitive receptors in close proximity to the designated access routes to the Proposed Development. The latest version of 'ADMS-Roads' (V5.0) has been used to model the dispersion of road traffic emissions, allowing the quantification of pollution levels at selected receptors.
- 4.4.2 The approach taken to the assessment of road traffic emissions is outlined further within the remainder of this section.

#### Model Inputs

4.4.3 The general model conditions used in the assessment of road traffic emissions are summarised in Table 7A.21. Other more detailed data used to model the dispersion of emissions is considered below.

| VARIABLE                    | INPUT                                                                                                |  |  |
|-----------------------------|------------------------------------------------------------------------------------------------------|--|--|
| Surface Roughness at source | 0.2 m                                                                                                |  |  |
| Receptors                   | Selected discrete receptors                                                                          |  |  |
| Receptor location           | X,Y co-ordinates determined by GIS. The<br>height of residential receptors were set at<br>1.5 metres |  |  |
| Emissions                   | NO <sub>X</sub> , PM <sub>10</sub> and PM <sub>2.5</sub>                                             |  |  |
| Emission Factors            | TII Road Emissions Model for baseline<br>(2022) and construction year (2025)<br>scenarios            |  |  |
| Meteorological Data         | 1 year of hourly sequential data, Mullingar (2022)                                                   |  |  |
| Emission Profiles           | None used                                                                                            |  |  |
| Terrain Types               | Flat terrain                                                                                         |  |  |
|                             | Long-term annual mean NO <sub>X</sub> concentration (µg/m <sup>3</sup> )                             |  |  |
| Model Output                | Long-term annual mean PM <sub>10</sub> concentration (µg/m <sup>3</sup> )                            |  |  |
|                             | Long-term annual mean PM <sub>2.5</sub><br>concentration (µg/m <sup>3</sup> )                        |  |  |

#### Table 7A.21: General ADMS Roads Model Conditions

#### Traffic Data

- 4.4.4 Predicted vehicle movements during the construction phase of the Proposed Development are detailed in EIAR Volume I, Chapter 14: Traffic.
- 4.4.5 The change in vehicle movements is predicted to peak at 11 one-way LGV (light goods vehicles) movements and 692 one-way HGV (heavy goods vehicles) movements accessing the Site via the M6 and R400. There are several identified sensitive receptors within 200m of affected links, and therefore a detailed assessment of construction traffic impacts has been conducted.

- 4.4.6 The derivation of the traffic data used in this assessment is set out in EIAR Chapter 14: Traffic. The data used in the road traffic dispersion modelling has been provided for the following scenarios:
  - 2023 baseline traffic (for model verification process);
  - 2025 baseline traffic + committed development traffic (the total future baseline traffic flows for the Construction assessment); and
  - 2025 baseline traffic + committed development traffic + peak construction traffic from the Proposed Development (the total traffic flows with the Proposed Development for the Construction assessment).
- 4.4.7 For the 2023 baseline scenario, the background values used in the assessment need to be annualised with a complete year of observed meteorological data. For this reason, this scenario has been undertaken using 2022 emission factors and NO<sub>x</sub> to NO<sub>2</sub> conversion factors for road traffic.
- 4.4.8 2025 represents peak construction traffic for air quality impacts, i.e. it is the peak for total traffic, leading to the highest emissions. A conservative assumption of using the highest 3-month peak traffic levels as the traffic levels for the whole year has been made. The traffic data used in the modelling of road traffic emissions are presented in Annex B to this report.

#### Emissions Data

4.4.9 The magnitude of road traffic emissions for the baseline and with development scenarios are calculated from traffic flow data using the TII's current emission factor database tool, updated in July 2023 (TII, 2023). The assessment considers the construction phase impact of road traffic emissions at receptors adjacent to roads in the vicinity of the Proposed Development.

### Modelled Domain – Discrete Receptors

4.4.10 The receptors for which the impacts of road traffic emissions have been predicted are listed in Table 7A.15. At these locations, an assessment has also been made of the combined effect of emissions from the Proposed Development stack.

### Meteorological Data

4.4.11 As for the model runs carried out for the Proposed Development, hourly sequential data from Mullingar Meteorological Station has been used for 2022, consistent with the year chosen to verify the performance of the model against measured nitrogen dioxide concentrations.

#### Consideration of Terrain

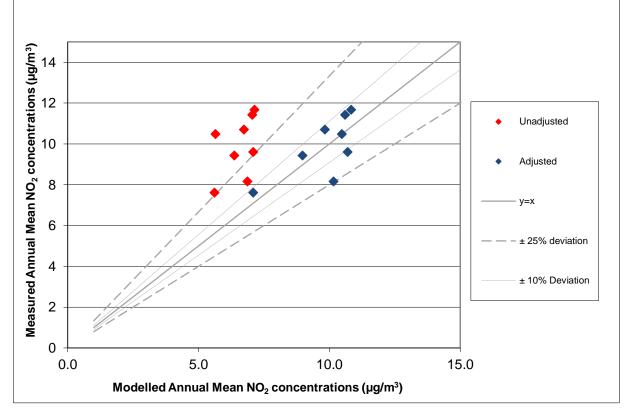
4.4.12 Emissions from road traffic make the greatest contribution to pollutant concentrations at sensitive receptors adjacent to the source (i.e. at the roadside). For this reason, there is not normally a large variation in height between the emission source and residential properties next to the roads included in the model. Therefore, terrain has not been included in the road traffic modelling assessment.

#### NO<sub>X</sub> to NO<sub>2</sub> Conversion

4.4.13 To accompany the publication of the guidance document LAQM.TG(22) (Defra, 2022), a NO<sub>X</sub> to NO<sub>2</sub> converter was made available as a tool to calculate the road NO<sub>2</sub> contribution from modelled road NO<sub>X</sub> contributions. The tool comes in the form of an MS Excel spreadsheet and uses borough specific data to calculate annual mean concentrations of NO<sub>2</sub> from dispersion model output values of annual mean concentrations of NO<sub>2</sub>. Version 8.1 (April 2020) (Defra, 2020) of this tool was used to calculate the total NO<sub>2</sub> concentrations at receptors from the modelled road NO<sub>X</sub> contribution and associated background concentration. Due to the location of the Proposed Development, the Transport Infrastructure Ireland (TII) Guidelines for the Treatment of Air Quality During the Planning and Construction of National Road Schemes states to "assume that regional concentrations in Ireland are characterised by a local authority in Northern Ireland (Craigavon)". The 'All other non-urban UK traffic' mix was selected, and the same year as the emissions tool was selected to stay consistent (see paragraph 4.5.8).

Bias Adjustment of Road Contribution NO<sub>X</sub>, PM<sub>10</sub> and PM<sub>2.5</sub>

- 4.4.14 The modelled road NO<sub>X</sub> contributions from the ADMS-Roads model have been adjusted for bias following the method described in LAQM.TG(22).
- 4.4.15 In order to inform model verification, a NO<sub>2</sub> diffusion tube monitoring survey was undertaken in the study area. The monitoring used in this assessment took place between the 9 of March 2023 and the 24 of August 2023. The locations of the diffusion tubes are presented in


4.4.16 Table 7A. 24 and in Figure 7A-1 of Annex A of this report.

4.4.17 A direct comparison can be made between concentrations modelled at the roadside diffusion tube locations and measured concentrations. Table 7A.22 provides a summary of the bias adjustment process. The year 2022 has been used for annualization as the last full calendar year. Of the full survey, eight tubes have been selected to be used for verification as they are the ones on the side of modelled roads. As some monitoring locations are close to the kerb, the concentrations have also been adjusted for calibration (verification) purposes to a virtual receptor location at the same distance back from the carriageway as the nearest sensitive receptor to the road link (DT3).

| TUBE<br>ID       | ZONE             | 2022<br>ANNUALISED<br>AND<br>ADJUSTED<br>MONITORED<br>ROAD NO <sub>X</sub><br>(µg/m <sup>3</sup> ) | 2022 ANNUAL<br>MEAN<br>MODELLED<br>ROAD NO <sub>X</sub><br>(µg/m <sup>3</sup> )<br>BEFORE<br>ADJUST-MENT | 2022<br>ANNUAL<br>MEAN<br>MODELLED<br>ROAD NO <sub>X</sub><br>(µg/m <sup>3</sup> )<br><i>AFTER</i><br><i>ADJUST-</i><br><i>MENT</i> | VERIFICATION<br>FACTOR FOR<br>ROAD NO <sub>X</sub><br>ADJUSTMENT |
|------------------|------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| DT2              | Main             | 9.0                                                                                                | 4.4                                                                                                      | 11.0                                                                                                                                |                                                                  |
| DT3*             |                  | 5.3                                                                                                | 1.8                                                                                                      | 4.4                                                                                                                                 |                                                                  |
| DT5              |                  | 8.6                                                                                                | 3.2                                                                                                      | 7.8                                                                                                                                 |                                                                  |
| DT6              |                  | 12.3                                                                                               | 4.4                                                                                                      | 10.8                                                                                                                                | 2.48                                                             |
| DT8              |                  | 12.8                                                                                               | 4.5                                                                                                      | 11.2                                                                                                                                |                                                                  |
| DT10             |                  | 6.3                                                                                                | 4.0                                                                                                      | 10.0                                                                                                                                |                                                                  |
| DT11             |                  | 11.0                                                                                               | 3.8                                                                                                      | 9.4                                                                                                                                 |                                                                  |
| DT9<br>*Distance | M6<br>Embankment | 10.6                                                                                               | 1.9                                                                                                      | 10.6                                                                                                                                | 5.67                                                             |

Distance corrected

- 4.4.18 The red dots on the graph below) show the variation of the unadjusted modelled concentration of total annual mean NO<sub>2</sub> at the measurement locations in the whole traffic study area. The blue dots show the adjusted modelled concentration at the total annual mean at the measurement locations. The comparison of measured and modelled concentrations here suggests that the model underpredicted at various locations in the Main and M6 Embankment study areas. Therefore, bias adjustment factors were required; the factor of 2.48 was applied to the modelled road  $NO_X$  in Main area and 5.67 on the M6 Embankment Area.
- 4.4.19 The uncertainty in the model has been assessed by comparing the adjusted modelled predictions to the measured concentrations of NO<sub>2</sub> and calculating the RMSE. LAQM TG(22) (Defra, 2022) identifies a standard of model uncertainty expressed as an RMSE value that is within 10% of the objective value as the idea for annual mean nitrogen dioxide 10% of the objective value is 4 µg/m<sup>3</sup>. A RMSE value for the whole study area of 1.0  $\mu$ g/m<sup>3</sup> was obtained for the adjusted model predictions, which being below 4 µg/m<sup>3</sup>, is evidence of a robust level of performance from the model.



Graph 7A. 1: Modelled NO2 Versus Monitored NO2 for the Road Traffic Study Area

4.4.20 The same bias adjustment factor derived for the modelled contributions of the primary pollutant  $NO_X$  has been applied to the modelled road  $PM_{10}$  and  $PM_{2.5}$  contributions, as recommended in LAQM.TG(22).

Predicting the Number of Days in which the Particulate Matter 24-hour Mean Objective is Exceeded

4.4.21 The guidance document LAQM.TG(03) (Defra, 2003) sets out the method by which the number of days in which the particulate matter 24 hr objective is exceeded can be obtained based on a relationship with the predicted particulate matter annual mean concentration. The most recent guidance LAQM.TG(22) suggests no change to this method. As such, the formula used within this assessment is:

No. of Exceedances = 
$$0.0014 * C^3 + \frac{206}{C} - 18.5$$

4.4.22 Where C is the annual mean concentration of  $PM_{10}$ .

Predicting the Number of Days in which the Nitrogen Dioxide Hourly Mean Objective is Exceeded

- 4.4.23 Research projects completed on behalf of Defra and the Devolved Administrations (Laxen and Marner, 2003; AEAT, 2008), have concluded that the hourly mean nitrogen dioxide objective is unlikely to be exceeded if annual mean concentrations are predicted to be less the 60 μg/m<sup>3</sup>.
- 4.4.24 In 2003, Laxen and Marner concluded:

"...local authorities could reliably base decisions on likely exceedances of the 1hour objective for nitrogen dioxide alongside busy streets using an annual mean of 60  $\mu$ g/m<sup>3</sup> and above."

4.4.25 The findings presented by Laxen and Marner (2003) are further supported by AEAT (2008) who revisited the investigation to complete an updated analysis including new monitoring results and additional monitoring sites. The recommendations of this report are:

"Local authorities should continue to use the threshold of 60  $\mu$ g/m<sup>3</sup> NO<sub>2</sub> as the trigger for considering a likely exceedance of the hourly mean nitrogen dioxide objective."

4.4.26 Therefore, this assessment will evaluate the likelihood of exceeding the hourly mean nitrogen dioxide objective by comparing predicted annual mean nitrogen dioxide concentrations at all receptors to an annual mean equivalent threshold of 60 μg/m<sup>3</sup> nitrogen dioxide. Where predicted concentrations are below this value, it can be concluded that the hourly mean nitrogen dioxide objective (200 μg/m<sup>3</sup> NO<sub>2</sub> not to be exceeded more than 18 times per year) will be achieved.

#### Specialised Model Treatments

4.4.27 No specialised model treatments have been used in the assessment of road traffic emissions.

## 5.0 BASELINE AIR QUALITY

#### 5.1 Overview

- 5.1.1 This section presents the information used to evaluate the background and baseline ambient air quality in the area surrounding the Site (see Figures 7A.1 and 7A.2 in Annex A). The following steps have been taken in the determination of background values. Where appropriate, the study focuses on data gathered in the vicinity of the Site:
  - review of local and national ambient monitoring data;
  - review of other monitoring undertaken in the area around the Site; and
  - review of background data and Site relevant Critical Loads from the APIS website.
- 5.1.2 The baseline data presented in this section covers the whole study area: the Power Plant Area, the Electricity Grid Connection, the Gas Connection Corridor and the surrounding land.

#### 5.2 Ambient Monitoring Data

#### Existing Air Quality

- 5.2.1 The existing environment has been described with reference to the most recently published EPA Air Quality Report and supplementary data (EPA, 2022).
- 5.2.2 The EPA manages the national ambient air quality network, which consists of 116 monitoring stations as of 2022, located across the country that monitor a range of pollutants, including some of those of relevance to this assessment. The most recent EPA Air Quality Report available was published in 2022 and refers to monitoring data gathered in 2021 and earlier.
- 5.2.3 EU legislation on air quality requires that Member States divide their territory into zones for the assessment and management of air quality. The zones in place in Ireland during the most recently available report of monitoring (EPA, 2022) are:
  - Zone A Dublin conurbation.
  - Zone B Cork conurbation;
  - Zone C large towns with a population >15,000; and
  - Zone D the remaining area of Ireland.
- 5.2.4 The EPA operate a network of air quality monitoring across the country. Data gathered by the nearest air quality monitoring undertaken to the Proposed Development Site is summarised in Table 7A. 23. Data is also presented as the average across the representative Zone D sites.

| MONITORING<br>STATION | TION (μg/m³) <sup>1</sup>                                                                                    |                       |                         | AIR<br>QUALITY |                      |                    |                        |
|-----------------------|--------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------|----------------|----------------------|--------------------|------------------------|
|                       |                                                                                                              |                       | 2018                    | 2019           | 2020                 | 2021               | STANDARD<br>(µg/m³)    |
| Zone D                |                                                                                                              | NO <sub>2</sub>       | 4.7                     | 5.7            | 4.0                  | 7.3                | 40 <sup>2</sup>        |
| Average <sup>5</sup>  |                                                                                                              | NOx                   | 6.7                     | 7.8            | 5.4                  | 14.5               | <b>30</b> <sub>3</sub> |
|                       |                                                                                                              | PM10                  | 10.7                    | 12.3           | 11.9                 | 11.6               | 40 <sup>2</sup>        |
|                       |                                                                                                              | PM <sub>2.5</sub>     | 7.5                     | 9.3            | 8.3                  | 7.9                | 25 <sup>2</sup>        |
|                       |                                                                                                              | CO <sup>4</sup>       | 400<br>(0) <sup>6</sup> | 100 (0)        | 400 (0) <sup>6</sup> | 300 (0)            | 10,000 <sup>2</sup>    |
|                       | Notes:                                                                                                       |                       |                         |                |                      |                    |                        |
|                       | •                                                                                                            | ted by the EPA in the | ••                      | ntary Tables t | o Support the a      | annual Air Quality | in Ireland reports.    |
|                       | 2 For the protecti                                                                                           | on of human health.   |                         |                |                      |                    |                        |
|                       | 3 For the protecti                                                                                           | on of ecosystems (n   | ature cons              | ervation rece  | ptors).              |                    |                        |
|                       | 4 Rolling 8-hour average – number of exceedances of the rolling 8-hour maximum Air Quality Standard provided |                       |                         |                |                      |                    |                        |
|                       | in parenthesis).                                                                                             |                       |                         |                |                      |                    |                        |
|                       | 5 Zone D average data discounts sites with data capture of <50%.                                             |                       |                         |                |                      |                    |                        |
|                       | 6 Average for Zor                                                                                            | ne C – no Zone D da   | ita available           | Э.             |                      |                    |                        |

#### Table 7A. 23 Air Quality Monitoring Data

- 5.2.5 The EPA data summarised in Table 7A. 23 above demonstrates that the existing air quality in the vicinity of the Proposed Development is unlikely to be constrained and concentrations are generally well below the respective Air Quality Standards and Environmental Assessment Levels for the protection of human health and ecosystems.
- 5.2.6 Monitored annual mean  $NO_X$  concentrations reported by the EPA for Zone D suggest that background values at the nature conservation sites considered in this assessment are not currently constrained by the pollutants associated with harm to ecosystems.

AECOM Project Specific Monitoring

- 5.2.7 To provide further detail on the variation in background NO<sub>2</sub> concentrations throughout the study area, a project specific diffusion tube survey was undertaken.
- 5.2.8 Results presented below are based on measurements realised between the 9 of March 2023 and the 24 of August 2023. The results from the survey were annualised to 2022 in line with the methodology set out in LAQM.TG (22) (Defra, 2022). The year 2022 has been as it is the last full calendar year. The results of the survey are shown in

5.2.9 Table 7A. 24. The raw monitoring data is located in Annex C. Monitoring data was annualised using data from the Edenderry, Emo Court and Kilkenny rural and background monitoring stations. Data for these sites was sourced from the airquality.ie website, operated by the EPA.

|             |                            |                | PERIOD                    | MEAN COI | NCENT | RATION              | (µg/m³)                     | _                           | BIAS                                                           |
|-------------|----------------------------|----------------|---------------------------|----------|-------|---------------------|-----------------------------|-----------------------------|----------------------------------------------------------------|
| SIT<br>E ID | GRID<br>REF<br>NIOS<br>(M) | SITE<br>TYPE   | Mar                       | Apr      | Мау   | June                | July                        | Aug                         | ADJUS<br>TED<br>ANNUA<br>LISED<br>MEAN<br>(μg/m <sup>3</sup> ) |
| DT1         | 50550,<br>401173           | Roadside       | 5.5                       | 5.3      | 5.8   | 5.8                 | 4.1                         | 3.6                         | 5.9                                                            |
| DT2         | 51078,<br>400677           | Roadside       | 8.4                       | 8.3      | 8.1   | 8.9                 | 8.6                         | 6.4                         | 9.6                                                            |
| DT3         | 53992,<br>397531           | Roadside       | 8.0                       | 11.1     | 11.9  | 14.5                | Road<br>closed<br>near tube | Road<br>closed<br>near tube | 11.2                                                           |
| DT4         | 54116,<br>396987           | Roadside       | 9.6                       | 8.8      | 8.9   | 9.7                 | Road<br>closed<br>near tube | Road<br>closed<br>near tube | 9.1                                                            |
| DT5         | 50145,<br>401566           | Roadside       | 6.4                       | 8.9      | 10.6  | 12.0                | Web /<br>other in<br>tube   | 5.9                         | 9.4                                                            |
| DT6         | 50025,<br>401713           | Roadside       | 9.6                       | 9.6      | 13.0  | 12.4                | Web /<br>other in<br>tube   | 8.5                         | 11.4                                                           |
| DT7         | 49099,<br>402827           | Roadside       | 7.0                       | 7.3      | 9.5   | 8.2                 | 6.2                         | 6.2                         | 8.8                                                            |
| DT8         | 49144,<br>402633           | Roadside       | Web /<br>other in<br>tube | 10.0     | 12.8  | 11.8                | 7.4                         | 6.3                         | 11.7                                                           |
| DT9         | 48188,<br>402481           | Roadside       | 6.9                       | 9.1      | 11.7  | 12.3                | 7.0                         | Web /<br>other in<br>tube   | 10.5                                                           |
| DT1<br>0    | 48446,<br>403356           | Roadside       | 6.9                       | 7.8      | 6.4   | Tube<br>on<br>floor | 7.6                         | 5.8                         | 8.2                                                            |
| DT1<br>1    | 59036,<br>403232           | Roadside       | Missing                   | Missing  | 8.8   | 10.6                | 8.2                         | 5.8                         | 10.7                                                           |
| DT1<br>2    | 54366,<br>396965           | Backgrou<br>nd | 5.0                       | 4.6      | 3.9   | 5.1                 | Missing                     | 6.5                         | 5.4                                                            |
| DT1<br>3    | 48145,<br>403670           | Backgrou<br>nd | 4.0                       | 4.1      | 3.1   | 3.8                 | 2.4                         | Web /<br>other in<br>tube   | 3.9                                                            |

Table 7A. 24 AECOM NO $_2$  Diffusion Tube Concentrations Monitored in 2023 and Annualised to 2022

5.2.10 The project specific NO<sub>2</sub> measurement results are all well below the annual mean NO<sub>2</sub> objectives. The annual mean NO<sub>2</sub> concentrations measured at background locations (DT12 to DT13) are markedly lower.

#### 5.3 Summary of Background Air Quality

5.3.1 The background pollutant concentrations used to inform this assessment have been obtained from the most recent Air Quality in Ireland report published by the EPA (2022) and diffusion tube measurements. With the 6 months survey

complete, the average annualised  $NO_2$  concentration measured at background locations (DT12 and DT13) has been used as a representative measurement of the local background option. All other pollutant were sourced from publicly available data.

5.3.2 The background pollutant concentration data is listed in Table 7A. 25. For pollutants with averaging periods of less than the annual mean, it is standard practice to assume the background concentration is the annual mean (long-term) value doubled, which is in line with EPA AG4 guidance (2020). Background nitrogen and acid deposition values, and ammonia concentrations were sourced from the APIS website (APIS, 2023). For the other pollutants, the latest version of the EPA report has been used and values for zone D for 2021 were selected as the latest year. The same values were used to represent the backgrounds in future years, as a conservative assumption (overall background concentrations have followed a downward trend over the past few years).

| Pollutant                                                                      | Averaging Period    | Rural Concentration<br>(µg/m³ unless stated) |
|--------------------------------------------------------------------------------|---------------------|----------------------------------------------|
| Nitrogen dioxide (NO <sub>2</sub> )                                            | Annual mean         | 4.6                                          |
|                                                                                | Hourly mean         | 9.2                                          |
| Carbon monoxide (CO)                                                           | Rolling 8-hour mean | 300                                          |
| Particulate matter (PM <sub>10</sub> )                                         | Annual mean         | 11.6                                         |
|                                                                                | Daily mean          | 11.6                                         |
| Fine particulate matter (PM <sub>2.5</sub> )                                   | Annual mean         | 7.9                                          |
| Oxides of nitrogen (NO <sub>x</sub> ) –<br>for the protection of<br>ecosystems | Annual mean         | Site specific, see result section            |
| Nitrogen deposition                                                            | Annual mean         | Site specific, see result section            |
| Acid deposition                                                                | Annual mean         | Site specific, see result section            |
| Ammonia                                                                        | Annual mean         | Site specific, see result section            |

| Table 7A. | 25 Background | Pollutant Concentrations |
|-----------|---------------|--------------------------|
|           | Lo Duongiouna |                          |

## 5.4 Predicted Baseline Pollutant Concentrations of NO<sub>2</sub>, PM<sub>10</sub> and PM<sub>2.5</sub> at Discrete Receptors Close to Roads

#### <u>Baseline</u>

5.4.1 Baseline annual mean concentrations of NO<sub>2</sub>, PM<sub>10</sub> and PM<sub>2.5</sub>, and the number of expected exceedances of the 24-hour 50  $\mu$ g/m<sup>3</sup> PM<sub>10</sub> air quality objectives at the receptors sensitive to changes in road traffic emissions during the current 2022 baseline scenario are listed in Table 7A. 26 below.

|     |                                              |                 | MEAN POL         | NUMBER OF<br>DAYS OF |                                                        |
|-----|----------------------------------------------|-----------------|------------------|----------------------|--------------------------------------------------------|
| ID  | RECEPTOR NAME                                | NO <sub>2</sub> | PM <sub>10</sub> | PM <sub>2.5</sub>    | EXCEEDANCE<br>OF 24-HOUR<br>MEAN OF<br>50 μg/m³ (DAYS) |
| R01 | Property on the R400 in Rochfortbridge       | 7.7             | 12.0             | 8.1                  | 1                                                      |
| R02 | Property on the R400 south of M6             | 10.5            | 12.2             | 8.3                  | 1                                                      |
| R03 | Property on the R400 south of M6             | 8.3             | 12.0             | 8.1                  | 1                                                      |
| R04 | Property on the R400 south of site entrance  | 8.2             | 12.1             | 8.2                  | 1                                                      |
| R05 | Property on the R400<br>near Yellow River    | 7.1             | 12.0             | 8.1                  | 1                                                      |
| R06 | Property on the R400 north of Rhode          | 9.6             | 12.3             | 8.4                  | 1                                                      |
| R14 | Property in<br>Farthingstown, south<br>of M6 | 6.8             | 11.8             | 8.0                  | 1                                                      |

| Table 7A, 26 Air Quality | v Statistics Predicted for  | r Baseline Scenario in 2022 |
|--------------------------|-----------------------------|-----------------------------|
|                          | y olalistics i redicted for |                             |

5.4.2 In the Baseline scenario the annual mean concentrations of all pollutants near to main roads in the vicinity of the Site are well below the environmental standards, indicating that air quality in the area around the Proposed Development is of a very good standard.

#### **Future Construction Baseline**

5.4.3 Predicted annual mean concentrations of NO<sub>2</sub>, PM<sub>10</sub> and PM<sub>2.5</sub>, and the number of exceedances of the 24-hour 50 μg/m<sup>3</sup> PM<sub>10</sub> air quality objective, at the selected receptors for the road traffic assessment, during the future 2025 baseline scenario for the Proposed Development are listed in Table 7A. 27. As described at paragraph 4.5.6 the traffic flows used for the future baseline scenario include other committed developments.

| ID RECEPTOR NAME |                                                   | -               | AL MEAN PO<br>CENTRATIO | NUMBER OF DAYS<br>OF EXCEEDANCE |                                                   |
|------------------|---------------------------------------------------|-----------------|-------------------------|---------------------------------|---------------------------------------------------|
|                  |                                                   | NO <sub>2</sub> | <b>PM</b> <sub>10</sub> | PM <sub>2.5</sub>               | OF 24-HOUR MEAN<br>OF 50 μg/m <sup>3</sup> (DAYS) |
| R01              | Property on the R400 in Rochfortbridge            | 7.1             | 12.0                    | 8.1                             | 1                                                 |
| R02              | Property on the R400 south of M6                  | 9.4             | 12.2                    | 8.3                             | 1                                                 |
| R03              | Property on the R400 south of M6                  | 7.6             | 12.0                    | 8.2                             | 1                                                 |
| R04              | Property on the R400<br>south of site<br>entrance | 7.5             | 12.2                    | 8.3                             | 1                                                 |
| R05              | Property on the R400 near Yellow River            | 6.6             | 12.0                    | 8.1                             | 1                                                 |

Table 7A. 27 Air quality baseline statistics predicted for 2025 baseline scenario (including other committed developments)

|     |                                              | -               | L MEAN PO<br>ENTRATION | NUMBER OF DAYS<br>OF EXCEEDANCE |                                       |
|-----|----------------------------------------------|-----------------|------------------------|---------------------------------|---------------------------------------|
|     |                                              | NO <sub>2</sub> | PM <sub>10</sub>       | PM <sub>2.5</sub>               | OF 24-HOUR MEAN<br>OF 50 μg/m³ (DAYS) |
| R06 | Property on the R400 north of Rhode          | 8.6             | 12.4                   | 8.4                             | 1                                     |
| R14 | Property in<br>Farthingstown, south<br>of M6 | 8.6             | 12.0                   | 8.1                             | 1                                     |

5.4.4 The predicted future baseline scenario for the construction year pollutant concentrations are well below all AQS values for all pollutants, indicating that air quality in the vicinity of the Proposed Development will continue to be of a very good standard. Compared to 2022, slightly higher concentrations of NO<sub>2</sub> are predicted alongside the M6, though still within the AQS objective values.

#### **Future Operational Baseline**

5.4.5 Predicted annual mean concentrations of NO<sub>2</sub>, PM<sub>10</sub> and CO, at the selected receptors during the future 2025 baseline scenario for the Proposed Development are listed in Table 7A. 28. As described at paragraph 4.5.6 the traffic flows used for the future baseline scenario include other committed developments. Although the operation of the Proposed Development won't have started in 2025, it is the latest year baseline traffic has been modelled for and, as future backgrounds and emissions from vehicles are expected to decrease year on year, it is a conservative assumption.

| Table 7A. 28 Air quality baseline statistics predicted for 2025 baseline scenario |
|-----------------------------------------------------------------------------------|
| (including other committed developments)                                          |

| ID  | RECEPTOR NAME                               |                 | L MEAN POLL<br>ENTRATION (µ |     |
|-----|---------------------------------------------|-----------------|-----------------------------|-----|
|     |                                             | NO <sub>2</sub> | PM <sub>10</sub>            | CO  |
| R01 | Property on the R400 in Rochfortbridge      | 7.1             | 12.0                        | 150 |
| R02 | Property on the R400 south of M6            | 9.4             | 12.2                        | 150 |
| R03 | Property on the R400 south of M6            | 7.6             | 12.0                        | 150 |
| R04 | Property on the R400 south of site entrance | 7.5             | 12.2                        | 150 |
| R05 | Property on the R400 near<br>Yellow River   | 6.6             | 12.0                        | 150 |
| R06 | Property on the R400 north of Rhode         | 8.6             | 12.4                        | 150 |
| R07 | Property on L1010 Togher,<br>west Rhode     | 4.6             | 11.6                        | 150 |
| R08 | Property on a farm north of Croghan         | 4.6             | 11.6                        | 150 |
| R09 | Property on a farm Rathconnel               | 4.6             | 11.6                        | 150 |
| R10 | Property in Hardwood                        | 4.6             | 11.6                        | 150 |
| R11 | Property on Rahanine Rd                     | 4.6             | 11.6                        | 150 |
| R12 | Property on a farm, south of M6             | 4.6             | 11.6                        | 150 |

| ID  | RECEPTOR NAME                | ANNUAL MEAN POLLUTANT<br>CONCENTRATION (µg/m³) |                         |     |  |
|-----|------------------------------|------------------------------------------------|-------------------------|-----|--|
|     |                              | NO <sub>2</sub>                                | <b>PM</b> <sub>10</sub> | CO  |  |
| R13 | Property on the L1009        | 4.6                                            | 11.6                    | 150 |  |
| S01 | Rhode Community Pre-school   | 4.6                                            | 11.6                    | 150 |  |
| S02 | Rhode N.S. School            | 4.6                                            | 11.6                    | 150 |  |
| S03 | Scoil Bhride, Croghan P.S.,  | 4.6                                            | 11.6                    | 150 |  |
|     | School                       |                                                |                         |     |  |
| S04 | St Joseph's Secondary,       | 4.6                                            | 11.6                    | 150 |  |
|     | Rochfortbridge, School       |                                                |                         |     |  |
| S05 | Miltownpass National School  | 4.6                                            | 11.6                    | 150 |  |
| S06 | Stonebridge Park Playschool, | 4.6                                            | 11.6                    | 150 |  |
|     | Rochfortbridge               |                                                |                         |     |  |

5.4.6 The predicted future baseline scenario for the construction year pollutant concentrations are well below all AQS values for all pollutants, indicating that air quality in the vicinity of the Proposed Development will continue to be of a very good standard. Compared to 2022, slightly higher concentrations of NO<sub>2</sub> are predicted alongside the M6, though still within the AQS objective values.

#### 5.5 Point Source Emissions Background Concentrations for Different Averaging Times

5.5.1 In accordance with EPA's AG4 guidance, the annual mean background pollutant concentrations have been obtained from the EPA or from project specific monitoring as described above and the short-term background concentration is assumed to be twice the annual mean concentration for NO<sub>2</sub> and CO and one and the same as the annual mean background concentration for PM<sub>10</sub>.

## 6.0 CONSTRUCTION PHASE ASSESSMENT

#### 6.1 Construction Dust Assessment

6.1.1 The construction phase for the Overall Project is 4 years, with the construction of the Power Plant Area (as defined in chapter 5) spanning 4 years, the Electricity Grid Connection almost 3 years and the Gas Connection Corridor element almost 2 years. There is the potential for impacts on local air quality and public amenity from emissions generated during the construction phase of the Overall Project.

#### Impact Assessment for Power Plant Area

- 6.1.2 Receptors potentially affected by dust soiling and short-term concentrations of PM<sub>10</sub> generated during construction activities are limited to those located within 250m of the nearest construction activity, and/ or within 50m of a public road used by construction traffic that is within 250m of the construction site entrances. Ecological receptors are limited to those located within 50m of the nearest construction activity and/ or within 50m of a public road used by construction activity and/ or within 50m of a public road used by construction activity and/ or within 50m of a public road used by construction activity and/ or within 50m of a public road used by construction activity and/ or within 50m of a public road used by construction traffic that is within 250m of the construction site entrance.
- 6.1.3 There are no human health, amenity or ecological receptors falling into those screening distances within 250 m of the Power Plant Area site or the access point. Further consideration of the effect of fugitive dust and particulate matter emissions from construction operations at the Power Plant Area site, has not therefore been carried out.

#### Impact Assessment for Electricity Grid Connection

#### Magnitude Assessment

- 6.1.4 The area where significant earthworks will be required are restricted to the preparation of the substation sites, which represents only a small part of the planning application area, and a corridor/zone where the buried sections of cabling would be installed. Excavated material would be utilised where possible to backfill trenches following installation of the cable in order to minimise removal of material from site.
- 6.1.5 According to IAQM criteria, the Electricity Grid Connection site has been classified in terms of its potential for pre-construction, earthworks, construction activities and trackout to generate emissions of dust as a 'small' site. This is due to the size of the overall area where earthworks would take place, in particular the substation site at the southern extent of the site. There would be a limited extent of excavation and cable installation works which would be carried out at any one time. Note that the guidance uses the term "demolition" instead of "pre-construction" but this is more appropriate here as there is no demolition as such, some site clearance activities will be required pre-construction and would mostly be akin to earthworks activities (and were therefore assessed using the risk factors for earthworks instead of demolition).

#### Receptor Identification

6.1.6 The period of time in which there is expected to be activity with the potential to give rise to fugitive dust emissions within the distance criteria for any receptor is

likely to be limited in the case of cable trench excavations. Each sensitive receptor would not be near to the same level of construction activity at the same time, and each receptor along the route is likely to be at its most sensitive (i.e. at the closest to the activity) for a relatively limited period. The construction of the substations, however, would occur over a nine-month period.

- 6.1.7 Potential dust impacts (pre-mitigation) have been assessed based on the receptor sensitivity and distance criteria outlined above and using professional judgment. The only human health and amenity receptors falling into those screening distances are in Croghan, next to the substation site at the southern extent of the site. The southern Site access is via the L1010 Togher between Rhode and Croghan, with only one residential receptor east along the proposed construction traffic route and within 500m of the Site entrance. The sensitivity of the area can be considered "medium" or "high" both for dust soiling impacts and for human health impacts from PM<sub>10</sub> releases from all activities, on account of the distance from the activity source to the receptors, and the existing low background concentration particulates (<24  $\mu$ g/m<sup>3</sup>).
- 6.1.8 All Ramsar sites, SPAs, SACs SACs and NHAs are further than 50m from the construction works associated with the Electricity Grid Connection. Deposition of nutrient nitrogen and acid to waterbodies and watercourses has not been considered as these types of receptors are not considered to be at risk from such emissions. Therefore, an assessment of construction dust on ecological receptors has not been carried out.

Area Sensitivity Assessment

6.1.9 The receptor sensitivity to the effects of dust deposition and PM<sub>10</sub> (human health) impacts has been determined for all activities, based on the closest distance from the identified receptors to those activities, as summarised in Table 7A.29 below. The overall area sensitivity to dust deposition and PM<sub>10</sub> (human health), based on the area sensitivity for each activity listed in Table 7A.29 below, is considered to be 'high'.

| ACTIVITY         | POTENTIAL<br>IMPACT     | RECEPTOR<br>SENSITIVITY AND<br>DISTANCE TO<br>ACTIVITY | OVERALL AREA<br>SENSITIVITY |
|------------------|-------------------------|--------------------------------------------------------|-----------------------------|
| Pre-construction | Dust deposition         | High<br><20 m                                          | High                        |
|                  | Health PM <sub>10</sub> | High<br><20 m                                          | Medium                      |
| Earthworks       | Dust deposition         | High<br><20 m                                          | High                        |
|                  | Health PM <sub>10</sub> | High<br><20 m                                          | Medium                      |
| Construction     | Dust deposition         | High<br><20 m                                          | High                        |
|                  | Health PM <sub>10</sub> | High<br><20 m                                          | Medium                      |
| Trackout         | Dust deposition         | High<br><20 m                                          | High                        |

| Table 7A.29: Area Sensitivity for Rece | eptors of Construction Dust |
|----------------------------------------|-----------------------------|
|----------------------------------------|-----------------------------|

| ACTIVITY | POTENTIAL<br>IMPACT     | RECEPTOR<br>SENSITIVITY AND<br>DISTANCE TO<br>ACTIVITY | OVERALL AREA<br>SENSITIVITY |
|----------|-------------------------|--------------------------------------------------------|-----------------------------|
|          | Health PM <sub>10</sub> | High                                                   | Medium                      |
|          |                         | <20 m                                                  |                             |

- 6.1.10 The risk of impacts from unmitigated activities has been determined through a combination of the potential dust emission magnitude and the sensitivity of the area, for each activity to determine the level of mitigation that should be applied. The risk of impacts from unmitigated activities are summarised in
- 6.1.11 Table 7A.30 below.

Table 7A.30: Risk of Impacts from Unmitigated Activities

|                                  | RISK OF IMPACT FROM ACTIVITY |                |                |                |  |
|----------------------------------|------------------------------|----------------|----------------|----------------|--|
| POTENTIAL<br>IMPACT              | PRE-<br>CONSTRUC-<br>TION    | EARTHWORKS     | CONSTRUCTION   | TRACKOUT       |  |
| Dust Soiling                     | Low risk                     | Low risk       | Low risk       | Low risk       |  |
| Human Health<br>PM <sub>10</sub> | Low risk                     | Low risk       | Low risk       | Low risk       |  |
| Ecology                          | Not applicable               | Not applicable | Not applicable | Not applicable |  |

- 6.1.12 The level of mitigation required to reduce dust and particulates from the Electrical Grid Connection construction activities to avoid significant impacts on receptors has been determined based on the above risk assessment.
- 6.1.13 Mitigation measures to be embedded within the Proposed Development will therefore be defined as listed in the 'low risk' schedule of measures listed in section 8.2 of the IAQM guidance and Annex E of this report. Additional site-specific measures will be identified in the Construction Environmental Management Plan (CEMP) if necessary.

#### Impact Assessment for Gas Connection Corridor

Magnitude Assessment

- 6.1.14 The area of excavation will be significantly smaller than the planning application area and restricted to a corridor/zone in the immediate vicinity of the pipeline trench. Excavated material would be utilised where possible to backfill the trench following installation of the gas pipeline in order to minimise removal of material from site.
- 6.1.15 According to IAQM criteria, the Gas Connection Corridor site has been classified in terms of its potential for pre-construction, earthworks, construction activities and trackout to generate emissions of dust as a 'small' site. This is due to the size of the overall area where earthworks would take place, in conjunction with the limited extent of excavation and pipeline installation works which would be carried out at any one time. Note that the guidance uses the term "demolition" instead of "pre-construction" but this is more appropriate here as there is no demolition as such, some site clearance activities will be required pre-construction and would

mostly be akin to earthworks activities (and were therefore assessed using the risk factors for earthworks instead of demolition).

#### Receptor Identification

- 6.1.16 The period of time in which there is expected to be activity with the potential to give rise to fugitive dust emission within the distance criteria for any receptor is likely to be very limited. Pipeline excavation and pipe laying is expected to progress along the route throughout the construction programme and each sensitive receptor would not be near to the same level of construction activity at the same time, and each receptor along the route is likely to be at its most sensitive (i.e. at the closest to the activity) for a relatively limited period (less than a week).
- 6.1.17 Potential dust impacts (pre-mitigation) have been assessed based on the receptor sensitivity and distance criteria outlined above and using professional judgment. Although there are residential properties within the planning application boundary, only a few properties lie within 250m of the construction activity area, i.e. where the pipeline is getting buried. This includes a couple of properties in Farthingstown as well as another couple on the R446, where the pipeline crosses the road. The southern Site access is via R400, with no residential receptor along the proposed construction traffic route and within 500m of the Site entrance. The sensitivity of the area can be considered "medium or high" both for dust soiling impacts and for human health impacts from PM<sub>10</sub> releases from all activities, on account of the distance from the activity source to the receptors, and the existing low background concentration particulates (<24  $\mu$ g/m<sup>3</sup>).
- 6.1.18 All Ramsar sites, SPAs, SACs and NHAs are further than 50m from the construction works associated with the Gas Connection Corridor. Deposition of nutrient nitrogen and acid to waterbodies and watercourses has not been considered as these types of receptors are not considered to be at risk from such emissions. Therefore, an assessment of construction dust on ecological receptors has been screened out.

Area Sensitivity Assessment

6.1.19 The receptor sensitivity to the effects of dust deposition and PM<sub>10</sub> (human health) impacts has been determined for all activities, based on the closest distance from the identified receptors to those activities, as summarised in Table 7A.31 below. The overall area sensitivity to dust deposition and PM<sub>10</sub> (human health), based on the area sensitivity for each activity listed in Table 7A.10 below, is considered to be 'high'.

| ACTIVITY         | POTENTIAL<br>IMPACT     | RECEPTOR<br>SENSITIVITY AND<br>DISTANCE TO<br>ACTIVITY | OVERALL AREA<br>SENSITIVITY |
|------------------|-------------------------|--------------------------------------------------------|-----------------------------|
| Pre-construction | Dust deposition         | High<br><20 m                                          | High                        |
|                  | Health PM <sub>10</sub> | High<br><20 m                                          | Medium                      |

#### Table 7A.31: Area Sensitivity for Receptors of Construction Dust

| ΑCΤΙVΙΤΥ     | POTENTIAL<br>IMPACT     | RECEPTOR<br>SENSITIVITY AND<br>DISTANCE TO<br>ACTIVITY | OVERALL AREA<br>SENSITIVITY |
|--------------|-------------------------|--------------------------------------------------------|-----------------------------|
| Earthworks   | Dust deposition         | High<br><20 m                                          | High                        |
|              | Health PM <sub>10</sub> | High<br><20 m                                          | Medium                      |
| Construction | Dust deposition         | High<br><20 m                                          | High                        |
|              | Health PM <sub>10</sub> | High<br><20 m                                          | Medium                      |
| Trackout     | Dust deposition         | High<br><20 m                                          | High                        |
|              | Health PM <sub>10</sub> | High<br><20 m                                          | Medium                      |

6.1.20 The risk of impacts from unmitigated activities has been determined through a combination of the potential dust emission magnitude and the sensitivity of the area, for each activity to determine the level of mitigation that should be applied. The risk of impacts from unmitigated activities are summarised in Table 7A. 35 below.

Table 7A.32: Risk of Impacts from Unmitigated Activities

|                                  |                           | RISK OF IMPACT FROM ACTIVITY |                |                |  |  |
|----------------------------------|---------------------------|------------------------------|----------------|----------------|--|--|
| POTENTIAL<br>IMPACT              | PRE-<br>CONSTRUC-<br>TION | EARTHWORKS                   | CONSTRUCTION   | TRACKOUT       |  |  |
| Dust Soiling                     | Low risk                  | Low risk                     | Low risk       | Low risk       |  |  |
| Human Health<br>PM <sub>10</sub> | Low risk                  | Low risk                     | Low risk       | Low risk       |  |  |
| Ecology                          | Not applicable            | Not applicable               | Not applicable | Not applicable |  |  |

- 6.1.21 The level of mitigation required to reduce dust and particulates from the Gas Connection Corridor construction activities to avoid significant impacts on receptors has been determined based on the above risk assessment.
- 6.1.22 Mitigation measures to be embedded within the Proposed Development will therefore be defined as listed in the 'low risk' schedule of measures listed in section 8.2 of the IAQM guidance and Annex E of this report. Additional site-specific measures will be identified in the Construction Environmental Management Plan (CEMP) if necessary.

#### 6.2 Construction Dispersion Modelling Results

#### Modelling Results for NO2

6.2.1 The predicted change in annual mean NO<sub>2</sub> concentrations that would occur during the traffic associated with construction works for the Proposed Development, at the selected sensitive receptors (being the residential receptors specified in Table 7A.15), are presented in Table 7A. 33. Any errors in the addition of PC to the baseline concentrations are due to rounding only.

- 6.2.2 The maximum predicted change in annual mean NO<sub>2</sub> concentrations at the selected sensitive receptors is +0.5 μg/m<sup>3</sup>, and this would occur in the vicinity of receptor R06, a property on the R400 north of Rhode. The reported change in concentration at this location is predominantly due to the impact of emissions from construction road traffic. The annual mean NO<sub>2</sub> PEC at all of the receptors would remain below the annual mean NO<sub>2</sub> Environmental Standard, therefore the change is not predicted to lead to a risk of the annual mean air quality standard being exceeded.
- 6.2.3 The receptor with the highest PEC is receptor R02, south of the R400/ M6 junction. At this location annual mean NO<sub>2</sub> concentrations are predicted to be 9.8 μg/m<sup>3</sup>. With the Proposed Development being constructed, annual mean concentrations would remain below the annual mean Environmental Standard for NO<sub>2</sub>.
- 6.2.4 The significance of the predicted change in annual mean NO<sub>2</sub>, PM<sub>10</sub> and PM<sub>2.5</sub> concentrations during construction in planning terms is discussed in Chapter 7: Air Quality (refer to ES Volume I).

| RECEPTOR | 2025 BASELINE | CHANGE<br>DUE TO<br>ROAD | PC %<br>ENV STD | PEC | PEC %<br>ENV<br>STD |
|----------|---------------|--------------------------|-----------------|-----|---------------------|
| R01      | 7.1           | 0.1                      | 0.2             | 7.2 | 18.0                |
| R02      | 9.4           | 0.4                      | 1.0             | 9.8 | 24.5                |
| R03      | 7.6           | 0.4                      | 0.9             | 8.0 | 19.9                |
| R04      | 7.5           | 0.4                      | 1.0             | 7.9 | 19.7                |
| R05      | 6.6           | 0.3                      | 0.7             | 6.9 | 17.3                |
| R06      | 8.6           | 0.5                      | 1.4             | 9.1 | 22.7                |
| R14      | 8.6           | 0.2                      | 0.4             | 8.7 | 21.8                |

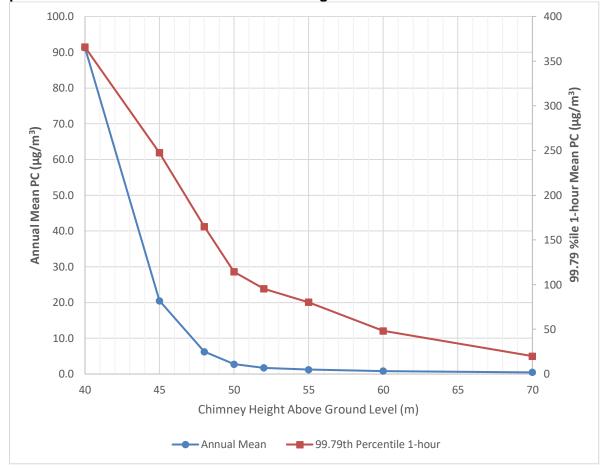
Table 7A. 33:Predicted change in annual mean NO<sub>2</sub> concentrations at discrete receptors (μg/m<sup>3</sup>) due to construction road traffic emissions, with comparison against Environmental Standard criteria

Modelling Results for PM<sub>10</sub> and PM<sub>2.5</sub> Particulates

- 6.2.5 Change in annual mean PM<sub>10</sub> and PM<sub>2.5</sub> concentrations at discrete receptors that would occur from the road traffic associated with the construction of the Proposed Development, at the selected sensitive receptors, is presented in Table 7A. 34 and Table 7A. 35. Any errors in the addition of PC to the baseline concentrations are due to rounding only.
- 6.2.6 The maximum predicted change in annual mean PM<sub>10</sub> and PM<sub>2.5</sub> concentrations at the selected sensitive receptors is +0.2 μg/m<sup>3</sup>. This change in annual mean PM<sub>10</sub> and PM<sub>2.5</sub> concentrations would not be a perceptible at air quality sensitive receptors, nor would it result in any additional days on which the PM<sub>10</sub> 24-hour objective is exceeded.
- 6.2.7 The predicted annual mean concentrations are well below the respective Environmental Standards for  $PM_{10}$  and  $PM_{2.5}$ .

| Table 7A. 34: Predicted change in annual mean PM <sub>10</sub> concentrations at discrete receptors |
|-----------------------------------------------------------------------------------------------------|
| (µg/m <sup>3</sup> ) due to construction road traffic emissions, with comparison against            |
| Environmental Standard criteria                                                                     |

| RECEPTOR | 2025<br>BASELINE | CHANGE DUE<br>TO ROAD | PC %<br>ENV<br>STD | PEC  | PEC %<br>ENV<br>STD |
|----------|------------------|-----------------------|--------------------|------|---------------------|
| R01      | 12.0             | <0.1                  | 0.1                | 12.0 | 30.0                |
| R02      | 12.2             | 0.1                   | 0.3                | 12.3 | 30.8                |
| R03      | 12.0             | 0.1                   | 0.3                | 12.1 | 30.4                |
| R04      | 12.2             | 0.1                   | 0.3                | 12.3 | 30.8                |
| R05      | 12.0             | 0.1                   | 0.2                | 12.1 | 30.3                |
| R06      | 12.4             | 0.2                   | 0.4                | 12.6 | 31.5                |
| R14      | 12.0             | <0.1                  | 0.1                | 12.0 | 30.0                |

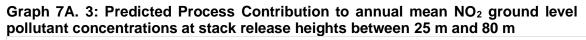

Table 7A. 35: Predicted change in annual mean  $PM_{2.5}$  concentrations at discrete receptors ( $\mu$ g/m<sup>3</sup>) due to construction road traffic emissions with comparison against Environmental Standard criteria

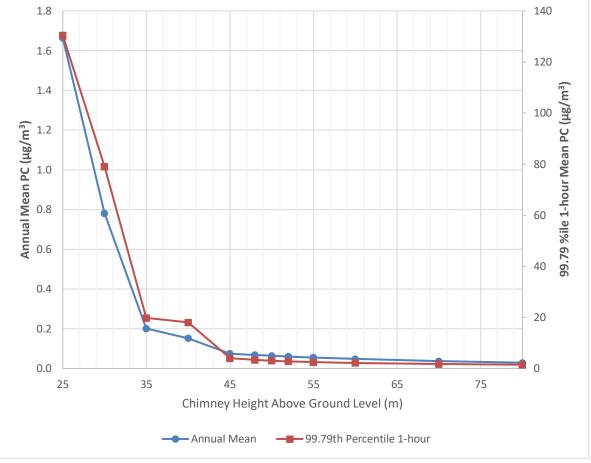
| RECEPTOR | 2025<br>BASELINE | CHANGE DUE<br>TO ROAD | PC %<br>ENV<br>STD | PEC | PEC %<br>ENV<br>STD |
|----------|------------------|-----------------------|--------------------|-----|---------------------|
| R01      | 8.1              | <0.1                  | 0.1                | 8.1 | 40.7                |
| R02      | 8.3              | 0.1                   | 0.3                | 8.3 | 41.7                |
| R03      | 8.1              | 0.1                   | 0.3                | 8.2 | 41.1                |
| R04      | 8.2              | 0.1                   | 0.3                | 8.3 | 41.6                |
| R05      | 8.1              | <0.1                  | 0.2                | 8.2 | 41.0                |
| R06      | 8.4              | 0.1                   | 0.5                | 8.5 | 42.4                |
| R14      | 8.0              | <0.1                  | 0.1                | 8.2 | 40.8                |

## 7.0 OPERATION DISPERSION MODELLING RESULTS

#### 7.1 Confirmation of Release Heights

- 7.1.1 This section reports the results of a confirmation of the release height for the emissions stacks ('the stacks') serving the combustion process, using the ADMS 6 dispersion model. The selection of an appropriate stack release height requires a number of factors to be taken into account, the most important of which is the need to balance a release height sufficient to achieve adequate dispersion of pollutants against other constraints such as visual impact. Separate assessments have been conducted for the CCGT and OCGT.
- 7.1.2 For the CCGT, emissions from the stack have been modelled at heights between 40m and 80m, at 5m increments. A graph, showing the PC to annual mean and maximum 1-hour pollutant concentrations for a modelled unit emission rate is presented in Graph 7A. 2. The purpose of the graph is to evaluate the optimum release height in terms of the dispersion of pollutants which would occur, against the visual constraints of further increases in release height. The comparison is based on emissions from the Normal Operation scenario.
- 7.1.3 Analysis of the annual mean curve shows that the benefit of incremental increases in release height up to 55m is relatively pronounced. At heights above 60m, the air quality benefit of increasing release height further is reduced.
- 7.1.4 The relative benefit of increasing the release height on maximum 1-hour concentrations follows a similar pattern to the annual mean curve. A flattening of the curve is seen at heights of greater than 60m, above which a reduced improvement in ground level concentrations is predicted with increasing release height.
- 7.1.5 The design release height of the stack is 60m above ground level. The graph illustrates that the use of a stack releasing emissions at 60m above ground level or greater would be capable of mitigating both the short-term and long-term impacts of the modelled emissions of all pollutants, such that no significant adverse effects would occur at any receptor. The incremental benefit of further increases in the release height become less effective in reducing the PC to annual mean ground-level concentrations.
- 7.1.6 It is therefore considered that 60m represents a height at which the visual impacts of further increases in stack release heights outweigh the benefits to air quality, in terms of human health.





Graph 7A. 2: Predicted Process Contribution to annual mean NO<sub>2</sub> ground level pollutant concentrations at stack release heights between 40 m and 80 m

- 7.1.7 For the OCGT, emissions from the stack have been modelled at heights between 25m and 80m, at 5m increments. A graph, showing the PC to annual mean and maximum 1-hour pollutant concentrations for a modelled unit emission rate is presented in Graph 7A. 3. The comparison is based on emissions from the Normal Operation scenario.
- 7.1.8 Analysis of the annual mean curve shows that the benefit of incremental increases in release height up to 40m is relatively pronounced. At heights above 45m, the air quality benefit of increasing release height further is reduced.
- 7.1.9 The relative benefit of increasing the release height on maximum 1-hour concentrations follows a relatively similar pattern to the annual mean curve. A flattening of the curve is seen at heights of greater than 45m, above which a reduced improvement in ground level concentrations is predicted with increasing release height.
- 7.1.10 The design release height of the stack is 45m above ground level. The graph illustrates that the use of a stack releasing emissions at 45m above ground level or greater would be capable of mitigating both the short-term and long-term impacts of the modelled emissions of all pollutants, such that no significant

adverse effects would occur at any receptor. The incremental benefit of further increases in the release height become less effective in reducing the PC to annual mean ground-level concentrations.

7.1.11 It is therefore considered that 45m represents a height at which the visual impacts of further increases in stack release heights outweigh the benefits to air quality, in terms of human health.





## 7.2 Sensitivity of Results to Meteorological Data

7.2.1 The dispersion modelling assessment has been undertaken using meteorological data from Mullingar, for the years 2018 to 2022. Table 7A.36, below, presents the maximum predicted ground-level impact, for a number of the averaging periods evaluated throughout the assessment, for each year of meteorological data within the dataset. The comparison is based on emissions from the Normal Operation stack at the previously selected heights, and the figure highlighted in bold is the highest value obtained from the five years of meteorological data modelled.

| МЕТ  | AVERAGING PERIOD AND STATISTIC |                                 |                          |  |  |
|------|--------------------------------|---------------------------------|--------------------------|--|--|
| YEAR | ANNUAL AVERAGE                 | 1 HR 99.79 <sup>™</sup><br>%ILE | MAX 8 HR<br>RUNNING MEAN |  |  |
| 2018 | 0.6                            | 27.4                            | 169.1                    |  |  |
| 2019 | 0.7                            | 25.3                            | 208.4                    |  |  |
| 2020 | 1.0                            | 49.5                            | 221.6                    |  |  |
| 2021 | 0.7                            | 30.2                            | 212.3                    |  |  |
| 2022 | 0.7                            | 33.9                            | 208.1                    |  |  |

Table 7A.36: Maximum Modelled Impact on Ground Level Concentrations (µg/m<sup>3</sup>), Raw Model Output

7.2.2 The results presented in Table 7A.36 demonstrate that there is a variation in the meteorological dataset for which the maximum modelled impact is reported for each averaging period. For this reason, the values reported in the table are the maximum value obtained from modelling each of the five years meteorological data within the assessment. The reported values can therefore be considered to represent a worst-case assessment of impacts that would be experienced during typical meteorological conditions.

#### 7.3 Modelling Results for NO<sub>2</sub>

- 7.3.1 This section focuses on the change in local annual mean NO<sub>2</sub> concentrations that would occur as a result of the operation of the stacks.
- 7.3.2 An isopleth plot, showing the modelled PC (sometimes referred to as a 'contour' plot) to annual mean NO<sub>2</sub> concentrations due to emissions from the main stacks at full load operating on natural gas, is presented in Figure 7A-4 of Annex A to this report for the 2020 meteorological year (maximum modelled concentrations). An isopleth plot of the PC showing the PC to 99.79<sup>th</sup> percentile of 1-hr NO<sub>2</sub> concentrations is presented in Figure 7A-5 of Annex A to this report for the 2020 meteorological year (maximum modelled concentrations).
- 7.3.3 The annual mean contour plot indicates that the maximum PC to ground level NO<sub>2</sub> concentrations would occur approximately 600 m to the north-east of the location of the CCGT stack, not in a location where the public would be regularly present for any length of time. At this location, the predicted annual mean NO<sub>2</sub> PC is 1.0  $\mu$ g/m<sup>3</sup>, which is 2.6% of the Environmental Standard. The PEC is 5.6  $\mu$ g/m<sup>3</sup> which is 14.1% of the Environmental Standard.
- 7.3.4 The largest predicted increase in 99.79<sup>th</sup> percentile of hourly means NO<sub>2</sub> concentrations, during full load continuous operation, occur closer to the main stack. The maximum predicted PC to short term NO<sub>2</sub> concentrations is 49.5 µg/m<sup>3</sup>. Such an impact is 24.7% of the 99.79<sup>th</sup> percentile 1-hour Environmental Standard for NO<sub>2</sub> of 200 µg/m<sup>3</sup>. The PEC in the area around the location of maximum impact is 58.7 µg/m<sup>3</sup>, which is 29.3% of the Environmental Standard.
- 7.3.5 During operation on the backup fuel, the maximum predicted PC to short term NO<sub>2</sub> concentrations is 322  $\mu$ g/m<sup>3</sup>. Such an impact is 161% of the 99.79<sup>th</sup> percentile 1-hour Environmental Standard for NO<sub>2</sub> of 200  $\mu$ g/m<sup>3</sup>. The PEC in the area around the location of maximum impact is 331  $\mu$ g/m<sup>3</sup>, which is 165% of the Environmental Standard.

7.3.6 The high maximum predicted 99.79<sup>th</sup> percentile impact on backup fuel is due to the conservative nature of the model inputs to the assessment, a stack NO<sub>x</sub> concentration at the upper end of the expected range has been assumed, in reality it is likely that the selected unit will be capable of much lower emissions. The small affected area where the exceedance is predicted to occur is a location to the north-east of the Power Plant Area site boundary, in an area where members of the public would not normally be present. At the most impacted sensitive receptor the predicted change is 48.9μg/m<sup>3</sup> or 24.4% of the 1-hour NO<sub>2</sub> air quality standard, when the Power Plant is operating at full load with secondary fuel.

Change in NO<sub>2</sub> Concentrations at Discrete Receptors during Operational Phase

- 7.3.7 The predicted change in annual mean NO<sub>2</sub> concentrations, that would occur during the operation of the Proposed Development, at the selected sensitive receptors, is presented in Table 7A. 37. Any errors/ discrepancy in the addition of PC to the baseline concentrations are due to rounding only.
- 7.3.8 The maximum predicted change in annual mean NO<sub>2</sub> concentrations from the full load scenario (continuous operation) at selected receptors is 0.3 μg/m<sup>3</sup>, and this would occur at R13, a property on the L1009 north-east of the Power Plant Area. The annual mean NO<sub>2</sub> PC at all receptors would remain below the annual mean NO<sub>2</sub> Environmental Standard, therefore the change is not predicted to lead to a risk of the annual mean air quality standard being exceeded.
- 7.3.9 The receptor with the highest PEC is receptor R02. At this location annual mean NO<sub>2</sub> concentrations are predicted to be 9.5 μg/m<sup>3</sup>. Therefore, with the Proposed Development in operation, annual mean concentrations would remain below the annual mean Environmental Standard for NO<sub>2</sub>.
- 7.3.10 The predicted change in short-term NO<sub>2</sub> concentrations (99.79<sup>th</sup> percentile of hourly means), that would occur during the operation of the Proposed Development, at the selected sensitive receptors, is presented in Table 7A. 38.
- 7.3.11 The maximum predicted change in short-term NO<sub>2</sub> concentrations from the full load scenario (continuous operation) at selected receptors is 7.7 μg/m<sup>3</sup>, and this would occur at R13, a property on the L1009 north-east of the Power Plant Area. The short-term NO<sub>2</sub> PC at all receptors would remain below the short-term NO<sub>2</sub> Environmental Standard, therefore the change is not predicted to lead to a risk of the annual mean air quality standard being exceeded.
- 7.3.12 The receptor with the highest PEC is also receptor R02. At this location annual mean NO<sub>2</sub> concentrations are predicted to be 25.8  $\mu$ g/m<sup>3</sup>. Therefore, with the Proposed Development in operation, short-term concentrations would remain below the Environmental Standard for NO<sub>2</sub>.
- 7.3.13 Results for other scenarios are reported in Table 7A. 39 to Table 7A. 40. For the Backup and Low Load scenarios, only short-term emissions were modelled as they will only be occurring for short period of time.

| Table 7A. 37: Predicted Change in Annual Mean NO <sub>2</sub> Concentrations at Discrete        |
|-------------------------------------------------------------------------------------------------|
| Receptors (µg/m <sup>3</sup> ) Due to Emissions from the Proposed Development for the Full Load |
| Scenario, with Comparison Against Environmental Standard Criteria                               |

| RECEPTOR | BACKGROUND | PC PROPOSED<br>DEVELOPMENT<br>STACK | PC %<br>AQS | PEC | PEC %<br>AQS |
|----------|------------|-------------------------------------|-------------|-----|--------------|
| R01      | 7.1        | 0.1                                 | 0.3%        | 7.2 | 18.0%        |
| R02      | 9.4        | 0.1                                 | 0.4%        | 9.5 | 23.9%        |
| R03      | 7.6        | 0.1                                 | 0.3%        | 7.7 | 19.3%        |
| R04      | 7.5        | 0.2                                 | 0.4%        | 7.7 | 19.1%        |
| R05      | 6.6        | 0.1                                 | 0.3%        | 6.7 | 16.8%        |
| R06      | 8.6        | 0.1                                 | 0.2%        | 8.7 | 21.7%        |
| R07      | 4.6        | 0.1                                 | 0.2%        | 4.7 | 11.7%        |
| R08      | 4.6        | 0.1                                 | 0.1%        | 4.7 | 11.6%        |
| R09      | 4.6        | 0.2                                 | 0.5%        | 4.8 | 12.0%        |
| R10      | 4.6        | 0.2                                 | 0.6%        | 4.8 | 12.1%        |
| R11      | 4.6        | 0.2                                 | 0.4%        | 4.8 | 11.9%        |
| R12      | 4.6        | 0.1                                 | 0.2%        | 4.7 | 11.7%        |
| R13      | 4.6        | 0.3                                 | 0.6%        | 4.9 | 12.1%        |
| S01      | 4.6        | 0.1                                 | 0.2%        | 4.7 | 11.7%        |
| S02      | 4.6        | 0.1                                 | 0.2%        | 4.7 | 11.7%        |
| S03      | 4.6        | <0.1                                | 0.1%        | 4.6 | 11.6%        |
| S04      | 4.6        | 0.1                                 | 0.2%        | 4.7 | 11.7%        |
| S05      | 4.6        | 0.2                                 | 0.4%        | 4.8 | 11.9%        |
| S06      | 4.6        | 0.1                                 | 0.3%        | 4.7 | 11.8%        |

Table 7A. 38: Predicted Change in 99.79<sup>th</sup> Percentile of Hourly Mean NO<sub>2</sub> Concentrations at Discrete receptors ( $\mu$ g/m<sup>3</sup>) Due to Emissions from the Proposed Development for the Full Load Scenario, with Comparison Against Environmental Standard Criteria

| RECEPTOR | BACKGROUND | PC PROPOSED<br>DEVELOPMENT<br>STACK | PC %<br>AQS | PEC  | PEC %<br>AQS |
|----------|------------|-------------------------------------|-------------|------|--------------|
| R01      | 14.2       | 4.0                                 | 2.0%        | 18.2 | 9.1%         |
| R02      | 18.8       | 7.0                                 | 3.5%        | 25.8 | 12.9%        |
| R03      | 15.2       | 6.6                                 | 3.3%        | 21.8 | 10.9%        |
| R04      | 15         | 7.6                                 | 3.8%        | 22.6 | 11.3%        |
| R05      | 13.2       | 4.2                                 | 2.1%        | 17.4 | 8.7%         |
| R06      | 17.2       | 3.4                                 | 1.7%        | 20.6 | 10.3%        |
| R07      | 9.2        | 3.5                                 | 1.8%        | 12.7 | 6.4%         |
| R08      | 9.2        | 3.6                                 | 1.8%        | 12.8 | 6.4%         |
| R09      | 9.2        | 3.6                                 | 1.8%        | 12.8 | 6.4%         |
| R10      | 9.2        | 4.0                                 | 2.0%        | 13.2 | 6.6%         |
| R11      | 9.2        | 5.2                                 | 2.6%        | 14.4 | 7.2%         |
| R12      | 9.2        | 4.6                                 | 2.3%        | 13.8 | 6.9%         |
| R13      | 9.2        | 7.7                                 | 3.8%        | 16.9 | 8.4%         |
| S01      | 9.2        | 3.3                                 | 1.7%        | 12.5 | 6.3%         |
| S02      | 9.2        | 3.2                                 | 1.6%        | 12.4 | 6.2%         |
| S03      | 9.2        | 2.9                                 | 1.5%        | 12.1 | 6.1%         |
| S04      | 9.2        | 3.8                                 | 1.9%        | 13.0 | 6.5%         |
| S05      | 9.2        | 3.4                                 | 1.7%        | 12.6 | 6.3%         |
| S06      | 9.2        | 4.2                                 | 2.1%        | 13.4 | 6.7%         |

Table 7A. 39: Predicted Change in 99.79<sup>th</sup> Percentile of Hourly Mean NO<sub>2</sub> Concentrations at Discrete receptors (µg/m<sup>3</sup>) Due to Emissions from the Proposed Development for the Backup scenario, with Comparison Against Environmental Standard Criteria

| RECEPTOR | BACKGROUND | PC PROPOSED<br>DEVELOPMENT<br>STACK | PC %<br>AQS | PEC  | PEC %<br>AQS |
|----------|------------|-------------------------------------|-------------|------|--------------|
| R01      | 14.2       | 25.4                                | 12.7%       | 39.6 | 19.8%        |
| R02      | 18.8       | 43.1                                | 21.5%       | 61.9 | 30.9%        |
| R03      | 15.2       | 40.7                                | 20.4%       | 55.9 | 28.0%        |
| R04      | 15         | 47.4                                | 23.7%       | 62.4 | 31.2%        |
| R05      | 13.2       | 25.9                                | 13.0%       | 39.1 | 19.6%        |
| R06      | 17.2       | 21.4                                | 10.7%       | 38.6 | 19.3%        |
| R07      | 9.2        | 22.2                                | 11.1%       | 31.4 | 15.7%        |
| R08      | 9.2        | 22.2                                | 11.1%       | 31.4 | 15.7%        |
| R09      | 9.2        | 22.5                                | 11.2%       | 31.7 | 15.8%        |
| R10      | 9.2        | 25.0                                | 12.5%       | 34.2 | 17.1%        |
| R11      | 9.2        | 32.4                                | 16.2%       | 41.6 | 20.8%        |
| R12      | 9.2        | 29.3                                | 14.6%       | 38.5 | 19.2%        |
| R13      | 9.2        | 48.9                                | 24.4%       | 58.1 | 29.0%        |
| S01      | 9.2        | 20.8                                | 10.4%       | 30.0 | 15.0%        |
| S02      | 9.2        | 20.5                                | 10.3%       | 29.7 | 14.9%        |
| S03      | 9.2        | 18.2                                | 9.1%        | 27.4 | 13.7%        |
| S04      | 9.2        | 23.3                                | 11.6%       | 32.5 | 16.2%        |
| S05      | 9.2        | 21.2                                | 10.6%       | 30.4 | 15.2%        |
| S06      | 9.2        | 25.9                                | 12.9%       | 35.1 | 17.5%        |

Table 7A. 40: Predicted Change in 99.79<sup>th</sup> Percentile of Hourly Mean NO<sub>2</sub> Concentrations at Discrete receptors ( $\mu$ g/m<sup>3</sup>) Due to Emissions from the Proposed Development for the Low Load scenario, with Comparison Against Environmental Standard Criteria

| RECEPTOR | BACKGROUND | PC PROPOSED<br>DEVELOPMENT<br>STACK | PC %<br>AQS | PEC  | PEC %<br>AQS |
|----------|------------|-------------------------------------|-------------|------|--------------|
| R01      | 14.2       | 3.0                                 | 1.5%        | 17.2 | 8.6%         |
| R02      | 18.8       | 5.2                                 | 2.6%        | 24.0 | 12.0%        |
| R03      | 15.2       | 5.5                                 | 2.8%        | 20.7 | 10.4%        |
| R04      | 15         | 7.4                                 | 3.7%        | 22.4 | 11.2%        |
| R05      | 13.2       | 3.2                                 | 1.6%        | 16.4 | 8.2%         |
| R06      | 17.2       | 2.9                                 | 1.4%        | 20.1 | 10.0%        |
| R07      | 9.2        | 2.7                                 | 1.3%        | 11.9 | 5.9%         |
| R08      | 9.2        | 3.3                                 | 1.6%        | 12.5 | 6.2%         |
| R09      | 9.2        | 3.4                                 | 1.7%        | 12.6 | 6.3%         |
| R10      | 9.2        | 3.5                                 | 1.8%        | 12.7 | 6.4%         |
| R11      | 9.2        | 3.9                                 | 1.9%        | 13.1 | 6.5%         |
| R12      | 9.2        | 3.5                                 | 1.8%        | 12.7 | 6.4%         |
| R13      | 9.2        | 6.0                                 | 3.0%        | 15.2 | 7.6%         |
| S01      | 9.2        | 2.6                                 | 1.3%        | 11.8 | 5.9%         |
| S02      | 9.2        | 2.4                                 | 1.2%        | 11.6 | 5.8%         |
| S03      | 9.2        | 2.1                                 | 1.0%        | 11.3 | 5.6%         |
| S04      | 9.2        | 2.9                                 | 1.4%        | 12.1 | 6.0%         |
| S05      | 9.2        | 3.0                                 | 1.5%        | 12.2 | 6.1%         |
| S06      | 9.2        | 3.1                                 | 1.6%        | 12.3 | 6.2%         |

- 7.3.14 Based on the results of the modelling, it is predicted that the operation of the Proposed Development would not directly increase the risk of an exceedance of the annual mean Environmental Standard at sensitive receptors for NO<sub>2</sub> for any scenario.
- 7.3.15 The significance of the predicted change in annual mean NO<sub>2</sub>, CO, PM<sub>10</sub> and PM<sub>2.5</sub> concentrations during operation is discussed in EIAR Chapter 7: Air Quality and Climate in EIAR Volume I.

#### 7.4 Modelling Results for CO

- 7.4.1 The predicted change in 8-hour rolling CO concentrations, that would occur during the operation of the Proposed Development, at the selected sensitive receptors, is presented in Table 7A. 41. Any errors/ discrepancy in the addition of PC to the baseline concentrations are due to rounding only.
- 7.4.2 The maximum predicted change in 8-hour rolling CO concentrations from the full load scenario (continuous operation) at selected receptors is 11.7 μg/m<sup>3</sup>, and this would occur at R13, a property on the L1009 north-east of the Power Plant Area. The 8-hour rolling CO PC at all receptors would remain below the 8-hour rolling CO Environmental Standard, therefore the change is not predicted to lead to a risk of the annual mean air quality standard being exceeded.
- 7.4.3 The receptor with the highest PEC is also Receptor R13. At this location 8-hour rolling CO concentrations are predicted to be 311.7 μg/m<sup>3</sup>. Therefore, with the Proposed Development in operation, annual mean concentrations would remain below the 8-hour rolling Environmental Standard for CO, and any measured exceedance at this location would not be directly caused by the operation of the Proposed Development.
- 7.4.4 Results for other scenarios are reported in Table 7A. 42 to Table 7A. 43.

Table 7A. 41: Predicted Change in 8-hour Rolling CO Concentrations at Discrete Receptors (µg/m<sup>3</sup>) Due to Emissions from the Proposed Development for the Full Load Scenario, with Comparison Against Environmental Standard Criteria

| RECEPTOR | BACKGROUND | PC PROPOSED<br>DEVELOPMENT<br>STACK | PC %<br>AQS | PEC   | PEC %<br>AQS |
|----------|------------|-------------------------------------|-------------|-------|--------------|
| R01      | 300        | 4.9                                 | <0.1%       | 304.9 | 3.0%         |
| R02      | 300        | 9.0                                 | 0.1%        | 309.0 | 3.1%         |
| R03      | 300        | 10.9                                | 0.1%        | 310.9 | 3.1%         |
| R04      | 300        | 10.0                                | 0.1%        | 310.0 | 3.1%         |
| R05      | 300        | 4.5                                 | <0.1%       | 304.5 | 3.0%         |
| R06      | 300        | 3.8                                 | <0.1%       | 303.8 | 3.0%         |
| R07      | 300        | 3.7                                 | <0.1%       | 303.7 | 3.0%         |
| R08      | 300        | 4.4                                 | <0.1%       | 304.4 | 3.0%         |
| R09      | 300        | 4.0                                 | <0.1%       | 304.0 | 3.0%         |
| R10      | 300        | 4.8                                 | <0.1%       | 304.8 | 3.0%         |
| R11      | 300        | 6.5                                 | 0.1%        | 306.5 | 3.1%         |
| R12      | 300        | 6.0                                 | 0.1%        | 306.0 | 3.1%         |
| R13      | 300        | 11.7                                | 0.1%        | 311.7 | 3.1%         |
| S01      | 300        | 4.0                                 | <0.1%       | 304.0 | 3.0%         |
| S02      | 300        | 3.5                                 | <0.1%       | 303.5 | 3.0%         |
| S03      | 300        | 2.8                                 | <0.1%       | 302.8 | 3.0%         |
| S04      | 300        | 4.6                                 | <0.1%       | 304.6 | 3.0%         |

| RECEPTOR | BACKGROUND | PC PROPOSED<br>DEVELOPMENT<br>STACK | PC %<br>AQS | PEC   | PEC %<br>AQS |
|----------|------------|-------------------------------------|-------------|-------|--------------|
| S05      | 300        | 3.9                                 | <0.1%       | 303.9 | 3.0%         |
| S06      | 300        | 4.3                                 | <0.1%       | 304.3 | 3.0%         |

# Table 7A. 42: Predicted Change in 8-hour Rolling CO Concentrations at Discrete Receptors (µg/m<sup>3</sup>) Due to Emissions from the Proposed Development for the Backup Scenario, with Comparison Against Environmental Standard Criteria

| RECEPTOR | BACKGROUND | PC PROPOSED<br>DEVELOPMENT<br>STACK | PC %<br>AQS | PEC   | PEC %<br>AQS |
|----------|------------|-------------------------------------|-------------|-------|--------------|
| R01      | 300        | 16.3                                | 0.2%        | 316.3 | 3.2%         |
| R02      | 300        | 30.0                                | 0.3%        | 330.0 | 3.3%         |
| R03      | 300        | 36.2                                | 0.4%        | 336.2 | 3.4%         |
| R04      | 300        | 33.0                                | 0.3%        | 333.0 | 3.3%         |
| R05      | 300        | 14.9                                | 0.1%        | 314.9 | 3.1%         |
| R06      | 300        | 12.9                                | 0.1%        | 312.9 | 3.1%         |
| R07      | 300        | 12.0                                | 0.1%        | 312.0 | 3.1%         |
| R08      | 300        | 14.2                                | 0.1%        | 314.2 | 3.1%         |
| R09      | 300        | 13.2                                | 0.1%        | 313.2 | 3.1%         |
| R10      | 300        | 15.8                                | 0.2%        | 315.8 | 3.2%         |
| R11      | 300        | 21.5                                | 0.2%        | 321.5 | 3.2%         |
| R12      | 300        | 19.9                                | 0.2%        | 319.9 | 3.2%         |
| R13      | 300        | 39.1                                | 0.4%        | 339.1 | 3.4%         |
| S01      | 300        | 13.3                                | 0.1%        | 313.3 | 3.1%         |
| S02      | 300        | 11.7                                | 0.1%        | 311.7 | 3.1%         |
| S03      | 300        | 9.4                                 | 0.1%        | 309.4 | 3.1%         |
| S04      | 300        | 15.7                                | 0.2%        | 315.7 | 3.2%         |
| S05      | 300        | 12.7                                | 0.1%        | 312.7 | 3.1%         |
| S06      | 300        | 14.2                                | 0.1%        | 314.2 | 3.1%         |

Table 7A. 43: Predicted Change in 8-hour Rolling CO Concentrations at Discrete Receptors (µg/m<sup>3</sup>) Due to Emissions from the Proposed Development for the Low Load Scenario, with Comparison Against Environmental Standard Criteria

| RECEPTOR | BACKGROUND | PC PROPOSED<br>DEVELOPMENT<br>STACK | PC %<br>AQS | PEC   | PEC %<br>AQS |
|----------|------------|-------------------------------------|-------------|-------|--------------|
| R01      | 300        | 3.1                                 | <0.1%       | 303.1 | 3.0%         |
| R02      | 300        | 6.2                                 | 0.1%        | 306.2 | 3.1%         |
| R03      | 300        | 7.6                                 | 0.1%        | 307.6 | 3.1%         |
| R04      | 300        | 9.5                                 | 0.1%        | 309.5 | 3.1%         |
| R05      | 300        | 3.7                                 | <0.1%       | 303.7 | 3.0%         |
| R06      | 300        | 2.8                                 | <0.1%       | 302.8 | 3.0%         |
| R07      | 300        | 2.5                                 | <0.1%       | 302.5 | 3.0%         |
| R08      | 300        | 3.7                                 | <0.1%       | 303.7 | 3.0%         |
| R09      | 300        | 3.6                                 | <0.1%       | 303.6 | 3.0%         |
| R10      | 300        | 4.2                                 | <0.1%       | 304.2 | 3.0%         |
| R11      | 300        | 4.7                                 | <0.1%       | 304.7 | 3.0%         |
| R12      | 300        | 4.2                                 | <0.1%       | 304.2 | 3.0%         |
| R13      | 300        | 8.4                                 | 0.1%        | 308.4 | 3.1%         |
| S01      | 300        | 2.9                                 | <0.1%       | 302.9 | 3.0%         |
| S02      | 300        | 2.8                                 | <0.1%       | 302.8 | 3.0%         |
| S03      | 300        | 2.1                                 | <0.1%       | 302.1 | 3.0%         |

| RECEPTOR | BACKGROUND | PC PROPOSED<br>DEVELOPMENT<br>STACK | PC %<br>AQS | PEC   | PEC %<br>AQS |
|----------|------------|-------------------------------------|-------------|-------|--------------|
| S04      | 300        | 2.9                                 | <0.1%       | 302.9 | 3.0%         |
| S05      | 300        | 2.9                                 | <0.1%       | 302.9 | 3.0%         |
| S06      | 300        | 3.4                                 | <0.1%       | 303.4 | 3.0%         |

#### 7.5 Modelling Results for PM<sub>10</sub>

- 7.5.1 The predicted change in short-term PM<sub>10</sub> concentrations (90.71<sup>th</sup> percentile 24hour mean), that would occur during the operation of the Proposed Development, at the selected sensitive receptors, is presented in Table 7A. 41. Any errors/ discrepancy in the addition of PC to the baseline concentrations are due to rounding only.
- 7.5.2 The maximum predicted change in short-term  $PM_{10}$  concentrations from the backup scenario (emergencies operation) at selected receptors is 0.1 µg/m<sup>3</sup>, and this would occur at R09 R11, R13 and S05. The short-term  $PM_{10}$  PC at all receptors would remain below the short-term  $PM_{10}$  Environmental Standard, therefore the change is not predicted to lead to a risk of the annual mean air quality standard being exceeded.
- 7.5.3 The receptor with the highest PEC is at the same receptors. At these locations short-term  $PM_{10}$  concentrations are predicted to be 11.7  $\mu$ g/m<sup>3</sup>. Therefore, with the Proposed Development in operation, annual mean concentrations would remain below the short-term  $PM_{10}$  Environmental Standard.
- 7.5.4 Results for other scenarios are reported in Table 7A. 42 to Table 7A. 43.

Table 7A. 44: Predicted Change in 90.71<sup>th</sup> Percentile of Hourly Mean PM<sub>10</sub> Concentrations at Discrete Receptors (μg/m<sup>3</sup>) Due to Emissions from the Proposed Development for the Backup Scenario, with Comparison Against Environmental Standard Criteria

| RECEPTOR | BACKGROUND | PC PROPOSED<br>DEVELOPMENT<br>STACK | PC %<br>AQS | PEC  | PEC %<br>AQS |
|----------|------------|-------------------------------------|-------------|------|--------------|
| R01      | 11.6       | <0.1                                | 0.1%        | 11.6 | 23.3%        |
| R02      | 11.6       | <0.1                                | 0.1%        | 11.6 | 23.3%        |
| R03      | 11.6       | <0.1                                | 0.1%        | 11.6 | 23.3%        |
| R04      | 11.6       | <0.1                                | 0.1%        | 11.6 | 23.3%        |
| R05      | 11.6       | <0.1                                | 0.1%        | 11.6 | 23.3%        |
| R06      | 11.6       | <0.1                                | 0.1%        | 11.6 | 23.3%        |
| R07      | 11.6       | <0.1                                | 0.1%        | 11.6 | 23.3%        |
| R08      | 11.6       | <0.1                                | <0.1%       | 11.6 | 23.2%        |
| R09      | 11.6       | 0.1                                 | 0.1%        | 11.7 | 23.3%        |
| R10      | 11.6       | 0.1                                 | 0.1%        | 11.7 | 23.3%        |
| R11      | 11.6       | 0.1                                 | 0.1%        | 11.7 | 23.3%        |
| R12      | 11.6       | <0.1                                | <0.1%       | 11.6 | 23.2%        |
| R13      | 11.6       | 0.1                                 | 0.2%        | 11.7 | 23.4%        |
| S01      | 11.6       | <0.1                                | 0.1%        | 11.6 | 23.3%        |
| S02      | 11.6       | <0.1                                | 0.1%        | 11.6 | 23.3%        |
| S03      | 11.6       | <0.1                                | <0.1%       | 11.6 | 23.2%        |
| S04      | 11.6       | <0.1                                | 0.1%        | 11.6 | 23.3%        |
| S05      | 11.6       | 0.1                                 | 0.1%        | 11.7 | 23.3%        |
| S06      | 11.6       | <0.1                                | 0.1%        | 11.6 | 23.3%        |

#### 7.6 Modelling Results: Impact on Designated Nature Sites

- 7.6.1 The results of the dispersion modelling of predicted impacts on sensitive ecological receptors are presented in Table 7A.45 to Table 7A.48. The tables set out the predicted PC to atmospheric concentrations of NH<sub>3</sub>, NO<sub>x</sub>, acid deposition and nutrient nitrogen deposition for the full load scenario, as it is the only scenario with potential changes du annual mean concentrations and depositions.
- 7.6.2 The EPA AG4 guidance document on dispersion modelling (EPA, 2020) and the EPA guidance document on Environmental Impact Assessment (EPA, 2022) do not specify a numerical value for significance as such, therefore, for the purposes of this assessment, impacts on nature conservation receptors have been considered to be imperceptible and therefore screened out from the need for further assessment where the annual mean PC is less than 1% of the relevant environmental standard. This approach is comparable with an approach set out within the UK Environment Agency guidance for assessing emissions to air from combustion processes.
- 7.6.3 The assessment results show that the predicted impacts are within the above criteria for insignificance at all of the selected receptors; no PCs of more than 1% of the long-term Critical Loads have been predicted to occur at any designated site.
- 7.6.4 The effect of atmospheric pollutant concentrations, nitrogen deposition rates and acid deposition rates on local Ramsar, SPA, SAC and NHAs can therefore be screened out without further assessment as it can be concluded with confidence that significant effects would not occur.

|        |                                        |                       | ANNUAL MEAN (μg/m³) |      |           |     |            |  |
|--------|----------------------------------------|-----------------------|---------------------|------|-----------|-----|------------|--|
| REC ID | SITE NAME                              | BKG µg/m <sup>3</sup> | CLE                 | PC   | PC/<br>CL | PEC | PEC/<br>CL |  |
| E1     | Raheenmore Bog<br>SAC                  | 3.1                   | 30                  | <0.1 | 0.2%      | 3.1 | 10.3%      |  |
| E2a    | Split Hills and Long<br>Hill Esker SAC | 3.2                   | 30                  | 0.1  | 0.2%      | 3.3 | 11.0%      |  |
| E2b    | Split Hills and Long<br>Hill Esker SAC | 3.3                   | 30                  | 0.1  | 0.2%      | 3.3 | 11.1%      |  |
| E2c    | Split Hills and Long<br>Hill Esker SAC | 3.3                   | 30                  | 0.1  | 0.2%      | 3.3 | 11.1%      |  |
| E3a    | Lough Ennell SAC                       | 3.1                   | 30                  | <0.1 | 0.1%      | 3.1 | 10.4%      |  |
| E3b    | Lough Ennell SAC<br>and SPA            | 3.0                   | 30                  | <0.1 | 0.2%      | 3.0 | 10.1%      |  |
| E3c    | Lough Ennell SAC                       | 3.1                   | 30                  | 0.1  | 0.2%      | 3.1 | 10.4%      |  |
| E3d    | Lough Ennell SAC                       | 3.0                   | 30                  | 0.1  | 0.2%      | 3.0 | 10.2%      |  |
| E3e    | Lough Ennell SAC<br>and SPA            | 2.9                   | 30                  | 0.1  | 0.2%      | 3.0 | 10.0%      |  |
| E4     | Mount Hevey Bog<br>SAC                 | 4.0                   | 30                  | 0.1  | 0.4%      | 4.1 | 13.8%      |  |
| E5     | Wooddown Bog SAC                       | 3.4                   | 30                  | 0.1  | 0.3%      | 3.5 | 11.5%      |  |

Table 7A.45: Dispersion Modelling Results for Ecological Receptors Due to Emissions from the Proposed Development for the Full Load Scenario - NO<sub>X</sub> Annual Mean

|        |                                        |           | ANNUAL MEAN (µg/m³) |       |           |     |            |  |
|--------|----------------------------------------|-----------|---------------------|-------|-----------|-----|------------|--|
| REC ID | SITE NAME                              | BKG µg/m³ | CLE                 | PC    | PC/<br>CL | PEC | PEC/<br>CL |  |
| E1     | Raheenmore Bog<br>SAC                  | 2.5       | 1                   | 0.003 | 0.3%      | 2.5 | 250.3%     |  |
| E2a    | Split Hills and Long<br>Hill Esker SAC | 2.5       | 1                   | 0.004 | 0.4%      | 2.5 | 253.4%     |  |
| E2b    | Split Hills and Long<br>Hill Esker SAC | 2.5       | 1                   | 0.004 | 0.4%      | 2.5 | 247.4%     |  |
| E2c    | Split Hills and Long<br>Hill Esker SAC | 2.9       | 1                   | 0.003 | 0.3%      | 2.9 | 292.3%     |  |
| E3a    | Lough Ennell SAC                       | 2.6       | 1                   | 0.002 | 0.2%      | 2.6 | 255.2%     |  |
| E3b    | Lough Ennell SAC<br>and SPA            | 2.5       | 1                   | 0.003 | 0.3%      | 2.5 | 254.3%     |  |
| E3c    | Lough Ennell SAC                       | 2.5       | 1                   | 0.003 | 0.3%      | 2.5 | 247.3%     |  |
| E3d    | Lough Ennell SAC                       | 2.4       | 1                   | 0.003 | 0.3%      | 2.4 | 244.3%     |  |
| E3e    | Lough Ennell SAC<br>and SPA            | 2.3       | 1                   | 0.003 | 0.3%      | 2.3 | 232.3%     |  |
| E4     | Mount Hevey Bog<br>SAC                 | 2.7       | 1                   | 0.006 | 0.6%      | 2.7 | 265.6%     |  |
| E5     | Wooddown Bog SAC                       | 2.4       | 1                   | 0.005 | 0.5%      | 2.4 | 235.5%     |  |

Table 7A.46: Dispersion Modelling Results for Ecological Receptors Due to Emissions from the Proposed Development for the Full Load Scenario – NH<sub>3</sub> Annual Mean

and SPA

and SPA

SAC

Lough Ennell SAC

Lough Ennell SAC

Lough Ennell SAC

Mount Hevey Bog

Wooddown Bog SAC

E3b

E3c

E3d

E3e

E4

E5

126.0%

130.7%

150.8%

120.1%

137.3%

136.1%

| REC ID | SITE NAME                              | NUTRIENT NITROGEN DEPOSITION (KG/HA/YR)              |     |      |           |      |            |  |  |
|--------|----------------------------------------|------------------------------------------------------|-----|------|-----------|------|------------|--|--|
|        |                                        | BACKGROUND<br>NITROGEN<br>DEPOSITION<br>(Kg N/ha/yr) | CLE | PC   | PC/<br>CL | PEC  | PEC/<br>CL |  |  |
| E1     | Raheenmore Bog<br>SAC                  | 7.53                                                 | 5   | 0.02 | 0.4%      | 7.55 | 151.0%     |  |  |
| E2a    | Split Hills and Long<br>Hill Esker SAC | 6.34                                                 | 5   | 0.05 | 1.0%      | 6.39 | 127.8%     |  |  |
| E2b    | Split Hills and Long<br>Hill Esker SAC | 6.84                                                 | 5   | 0.05 | 1.0%      | 6.89 | 137.8%     |  |  |
| E2c    | Split Hills and Long<br>Hill Esker SAC | 6.96                                                 | 5   | 0.04 | 0.8%      | 7.00 | 140.0%     |  |  |
| E3a    | Lough Ennell SAC                       | 7.04                                                 | 5   | 0.02 | 0.3%      | 7.06 | 141.1%     |  |  |
| E3h    | Lough Ennell SAC                       | 6.28                                                 | 5   | 0.02 | 0.4%      | 6 30 | 126.0%     |  |  |

0.02

0.02

0.04

0.03

0.05

0.04

0.4%

0.5%

0.8%

0.5%

0.9%

0.7%

6.30

6.53

7.54

6.01

6.87

6.81

Table 7A.47: Dispersion Modelling Results for Ecological Receptors due to Emissions from the Proposed Development for the Full Load

6.28

6.51

7.5

5.98

6.82

6.77

5

5

5

5

5

5

| Table 7A.48: Dispersion Modelling Results for Ecological Receptors Due to Emissions from the Proposed Development for the Full Load |
|-------------------------------------------------------------------------------------------------------------------------------------|
| Scenario – Total Acid Deposition N + S (keq/ha/yr)                                                                                  |

| REC<br>ID | SITE NAME                              | NUTRIENT NITROGEN DEPOSITION (KG/HA/YR)             |                                                      |               |               |               |        |           |      |            |
|-----------|----------------------------------------|-----------------------------------------------------|------------------------------------------------------|---------------|---------------|---------------|--------|-----------|------|------------|
|           |                                        | BACKGROUND<br>SULPHUR<br>DEPOSITION<br>(KEQ /HA/YR) | BACKGROUND<br>NITROGEN<br>DEPOSITION<br>(KEQ /HA/YR) | MinCL<br>minN | MinCL<br>maxN | MinCL<br>maxS | РС     | PC/<br>CL | PEC  | PEC/<br>CL |
| E1        | Raheenmore Bog SAC                     | 0.48                                                | 0.04                                                 | 0.143         | 0.371         | 0.228         | 0.0016 | 0.4%      | 0.52 | 140.6%     |
| E2a       | Split Hills and Long Hill<br>Esker SAC | 0.49                                                | 0.04                                                 | 0.143         | 0.379         | 0.237         | 0.0035 | 0.9%      | 0.53 | 140.4%     |
| E2b       | Split Hills and Long Hill<br>Esker SAC | 0.48                                                | 0.04                                                 | 0.143         | 0.379         | 0.237         | 0.0035 | 0.9%      | 0.52 | 137.8%     |
| E2c       | Split Hills and Long Hill<br>Esker SAC | 0.53                                                | 0.04                                                 | 0.143         | 0.379         | 0.237         | 0.0028 | 0.7%      | 0.57 | 150.7%     |
| E3a       | Lough Ennell SAC                       | Not Sensitive                                       |                                                      |               |               |               |        |           |      |            |
| E3b       | Lough Ennell SAC and SPA               |                                                     |                                                      |               |               |               |        |           |      |            |
| E3c       | Lough Ennell SAC                       |                                                     |                                                      |               |               |               |        |           |      |            |
| E3d       | Lough Ennell SAC                       |                                                     |                                                      |               |               |               |        |           |      |            |
| E3e       | Lough Ennell SAC and SPA               |                                                     |                                                      |               |               |               |        |           |      |            |
| E4        | Mount Hevey Bog SAC                    | 0.49                                                | 0.05                                                 | 0.143         | 0.358         | 0.215         | 0.0034 | 0.9%      | 0.54 | 151.8%     |
| E5        | Wooddown Bog SAC                       | 0.48                                                | 0.05                                                 | 0.143         | 0.411         | 0.268         | 0.0026 | 0.6%      | 0.53 | 129.6%     |

## 8.0 CUMULATIVE IMPACTS

- 8.1.1 The emissions to air from other committed developments and cumulative emission sources in the area around the site have been assessed in this section as separate groups within the dispersion model. The source groups are described below:
  - The Proposed Development; and
  - The LEL Castlelost Approved Development.

#### 8.1 Dispersion Modelling Results – Human Health

8.1.1 Annex D includes the cumulative modelled results for annual mean NO<sub>2</sub>, 99.79<sup>th</sup> Percentile NO<sub>2</sub>, 8-hour rolling CO, daily NO<sub>x</sub>, nutrient nitrogen and acid deposition. Discussion of the modelled results is within the following sections.

#### Annual Mean NO<sub>2</sub>

8.1.2 The maximum predicted Process Contribution (PC) at sensitive receptors is 0.3  $\mu$ g/m<sup>3</sup> at R13, a property on the L1009 north-east of the Power Plant Area. This represents 0.7% of the Environmental, and the PEC off 4.9  $\mu$ g/m<sup>3</sup> represents 12.2% of the Standard.

#### <u>99.79<sup>th</sup> Percentile NO<sub>2</sub></u>

8.1.3 With the sources running on natural gas, the highest predicted PC at sensitive receptors is located at R13, a property on the R400 south of the Power Plant Area Site entrance. The predicted PC is 8.5  $\mu$ g/m<sup>3</sup> which is 4.3% of the Environmental Standard. The predicted PEC is 17.7  $\mu$ g/m<sup>3</sup> which is 8.9% of the Environmental Standard.

#### 8-hour Rolling CO

- 8.1.4 For 8-hour rolling CO with the sources running on natural gas, the highest predicted PC is 13.5 μg/m<sup>3</sup> at R13, a property on the L1009 east of the Power Plant Area. This represents 0.1% of the Environmental Standard of 10,000μg/m<sup>3</sup>.
- 8.1.5 The significance of the predicted change in NO<sub>2</sub> and CO concentrations from other committed developments and cumulative emission sources is discussed in EIAR Chapter 7: Air Quality and Climate (refer to EIAR Volume I).

#### 8.2 Dispersion Modelling Results – Ecological Receptors

- 8.2.1 The predicted process contributions for each of the modelled scenarios, due to the operation of the Proposed Development, at the selected sensitive ecological receptors:
  - Do not exceed the first stage screening threshold of 1% of the environmental standard for annual mean NOx concentrations;
  - Do not exceed the screening threshold of 1% of the environmental standard for annual mean nutrient nitrogen deposition; and
  - Do not exceed the screening threshold of 1% of the environmental standard for annual mean acid deposition.

Proposed Derrygreenagh Power Project, Co. Offaly Environmental Impact Assessment Report – Volume II January 2024

8.2.2 As the screening thresholds were not exceeded, there would not be the need to proceed to a more detailed assessment of the effect of emissions from Proposed Development and Overall Project.

## 9.0 ASSESSMENT OF LIMITATIONS AND ASSUMPTIONS

- 9.1.1 This section outlines the potential limitations associated with the dispersion modelling assessment. Where assumptions have been made, these are also detailed here.
- 9.1.2 The greatest uncertainty associated with any dispersion modelling assessment arises through the inherent uncertainty of the dispersion modelling process itself. Despite this, the use of dispersion modelling is a widely applied and accepted approach for the prediction of impacts from a development such as this.
- 9.1.3 In order to minimise the likelihood of under-estimating the PC to ground level concentrations from the emissions stack, the following assumptions have been made within the assessment:
  - The Proposed Development has been assumed to operate on a continuous basis i.e. for 8,760 hour per year, although in practice the plant will require routine maintenance periods;
  - The modelling predictions are based on the use of five full years of meteorological data from Mullingar, for the years 2018 to 2022 inclusive; the use of five years data can be considered to represent the majority of meteorological conditions that would be experienced during the future operation of the Proposed Development; and
  - Emission concentrations for the process are calculated based on the use of IED limits, BAT-AEL concentrations, manufacturer data or maximum measured emission rates at comparable facilities.
- 9.1.4 The following assumptions have been made in the preparation of the assessment:
  - A 100% NO<sub>x</sub> to NO<sub>2</sub> conversion rate has been assumed in predicting the long-term PC, and 50% for the short-term PC; and
  - Local background data in Ireland is relatively difficult to obtain therefore, aside from NO<sub>2</sub>, national values were used.
- 9.1.5 In particular, the use of IED or BAT-AEL emission limits for most of the pollutants in the study is likely to result in an over-prediction of impacts from the Proposed Development. Emissions tests on other facilities of comparable design within the UK have shown that actual emissions associated with this type of facility actually represent only a fraction of their respective ELVs for most pollutants.

## 10.0 SUMMARY

- 10.1.1 This report has assessed the impact on local air quality of the operation of the Proposed Development and Overall Project. The assessment has used the dispersion models ADMS and ADMS Roads.
- 10.1.2 The assessment of emissions from the Proposed Development emissions stacks ('the stacks') has focused on the impact on ground-level concentrations of the pollutants specified in the IED. Particular attention has been given to the impact on concentrations of NO<sub>2</sub> and CO in the vicinity of residential properties in close proximity to the Proposed Development and Overall Project and near to major traffic routes.
- 10.1.3 An evaluation of release height for the Proposed Development CCGT stack has shown that a release height of 60m above ground level is capable of mitigating the short-term and long-term impacts of emissions to a level which is not significant, with regard to existing air quality and ambient air quality standards. The design of the Proposed Development includes a CCGT stack with a release height of 60m above ground level. The same process showed that a release height of 45m above ground level for the OCGT is capable of mitigating the short-term and long-term impacts of emissions to a level which is not significant, with regard to existing air quality and ambient air quality standards.
- 10.1.4 Emissions from the Proposed Development stacks and construction road traffic would result in small increases in ground-level concentrations of the modelled pollutants. Taking into account available information on background concentrations within the modelled domain, predicted operational concentrations of the modelled pollutants would be within current Environmental Standards for the protection of human health at sensitive receptors.
- 10.1.5 The results from modelling of emissions from the Proposed Development stacks predicted an impact on annual mean  $NO_2$  concentrations of less than 0.4  $\mu$ g/m<sup>3</sup> at sensitive receptors.
- 10.1.6 The modelling of impacts at designated ecological sites has predicted that Proposed Development stacks emissions would give rise to an increase in atmospheric concentrations of NO<sub>X</sub> or through deposition of nutrient nitrogen and acid that are at a magnitude of less than 1% of the relevant criteria.
- 10.1.7 The use of emission concentrations at the BAT-AEL emission limit values is likely to have resulted in an over-prediction of impacts from the Proposed Development and Overall Project. Therefore, the reported impacts are considered to represent a realistic worst case and a robust assessment of likely significance effects at all sensitive receptor locations has been carried out.

## 11.0 REFERENCES

AEAT (2008), Analysis of the relationship between annual mean nitrogen dioxide concentrations and exceedances of the 1-hour mean AQS Objective, accessed on 18<sup>th</sup> October 2023

http://laqm.defra.gov.uk/documents/NO2relationship\_report.pdf

CERC (2023), ADMS Roads and ADMS 6 Validation Papers, Cambridge Environmental Research Consultants, from: <u>http://www.cerc.co.uk/environmental-software/model-validation.html</u> accessed on 18<sup>th</sup> October 2023

Centre for Ecology and Hydrology and APIS (2023) Air Pollution Information Service, url: <u>http://www.apis.ac.uk</u> accessed on 18<sup>th</sup> October 2023

Council of European Communities (1999), First Daughter Directive on limit values for sulphur dioxide, nitrogen dioxide and oxides of nitrogen, particulate matter and lead in ambient air, 1999/30/EC

Council of European Communities (2000), Second Daughter Directive on limit values for benzene and carbon monoxide in ambient air, 2000/69/EC

Council of European Communities (2002), Third Daughter Directive on ozone in ambient air, 2002/3/EC.

Council of the European Union (1996) Council Directive 96/62/EC of 27 September 1996 on ambient air quality assessment and management

Council of the European Union (1997) Directive 97/101/EC: Council Decision of 27 January 1997 establishing a reciprocal exchange of information and data from networks and individual stations measuring ambient air pollution within the Member States

Council of the European Union (2008) Council Directive 2008/50/EC on Ambient Air Quality and Cleaner Air for Europe

Council of the European Union (2015) Council Directive (EU) 2015/2193 of 25 November 2015 on the limitation of emissions of certain pollutants into the air from medium combustion plants

Environmental Protection Agency (2020). Air Dispersion Modelling from Industrial Installations Guidance Note (AG4).

https://www.epa.ie/publications/compliance--enforcement/air/air-guidance-notes/epaair-dispersion-modelling-guidance-note-ag4-2020.php accessed on 18<sup>th</sup> October 2023

Environmental Protection Agency (2023). Air Quality in Ireland 2022. https://www.epa.ie/publications/monitoring--assessment/air/air-quality-in-ireland-2022.php accessed on 18<sup>th</sup> October 2023

Environmental Protection Agency (2022). Guidelines on the Information to be Contained in Environmental Impact Assessment Reports.

https://www.epa.ie/publications/monitoring--assessment/assessment/guidelineson-the-information-to-be-contained-in-environmental-impact-assessment.php accessed on 18<sup>th</sup> October 2023

Proposed Derrygreenagh Power Project, Co. Offaly Environmental Impact Assessment Report – Volume II January 2024

European Commission (2017). Best Available Techniques (BAT) Reference Document for Large Combustion Plants, Publications Office of the European Union, 2017

Government of Ireland – Department of Housing, Local Government and Heritage (2020). Project Ireland 2040 – National Planning Framework. <u>https://assets.gov.ie/100716/f6daba1e-cb06-4eeb-94a7-98fea655517e.pdf</u> accessed on 18<sup>th</sup> October 2023

Government of Ireland – Department of Housing, Local Government and Heritage (2018). Project Ireland 2040 – National Development Plan 2018 - 2027, Updated 26 November 2020.

https://www.gov.ie/pdf/?file=https://assets.gov.ie/37937/12baa8fe0dcb43a7812 2fb316dc51277.pdf#page=null accessed on 18<sup>th</sup> October 2023

Government of Ireland (2011). National Air Quality Standards Regulations - S.I. No. 180 of 2011.

https://assets.gov.ie/46933/e3e8439ee9ef4bd7bb8443e57ede2944.pdf accessed on 18<sup>th</sup> October 2023

Transport Infrastructure Ireland (formerly National Roads Authority) (2011). Air Quality Assessment of Proposed National Roads - Standard https://www.tiipublications.ie/library/PE-ENV-01107-01.pdf accessed on 18<sup>th</sup> October 2023

Institute of Air Quality Management (2023) Guidance on the assessment of dust from demolition and construction 2023 Version 2.1 dated August 2023.

Institute of Air Quality Management (2017) Land-Use Planning & Development Control: Planning for Air Quality v1.2.

Institute of Air Quality Management (2020) A guide to the assessment of air quality impacts on designated nature conservation sites, v1.1 May 2020

TII (2023), Road Emission Model, accessed via URL https://web.tii.ie/ accessed on 30<sup>th</sup> October 2023

Defra (2020), Defra NO<sub>x</sub> to NO<sub>2</sub> Calculator (v8.1, august 2020), accessed via URL <u>https://laqm.defra.gov.uk/review-and-assessment/tools/background-maps.html#NOxNO2calc</u> accessed on 14<sup>th</sup> December 2022

EA (2018), Air emissions risk assessment for your environmental permit, <u>https://www.gov.uk/guidance/air-emissions-risk-assessment-for-your-</u><u>environmental-permit</u>. Accessed 14<sup>th</sup> December 2022

European Commission (2010), Industrial Emissions Directive

Official Journal of the European Union (2017), Commission Implementing Decision (EU) 2017/1442of 31<sup>st</sup> July 2017, establishing best available techniques (BAT) conclusions, under Directive 2010/75/EU of the European Parliament and of the Council, for large combustion plants

Proposed Derrygreenagh Power Project, Co. Offaly Environmental Impact Assessment Report – Volume II January 2024

Laxen and Marner (2003), Analysis of the Relationship between 1-hour and annual mean nitrogen dioxide at UK Roadside and Kerbside Monitoring Sites

Cambridge Environmental Research Consultants (2023), ADMS 6 User Guide v6, <u>https://www.cerc.co.uk/environmental-software/user-guides.html</u> (Accessed 27/10/2023)

# ANNEX A: FIGURES (INCLUDED IN CHAPTER 7)

| Figure 7A.1: | Air Quality Study Area and Human Receptors and Baseline<br>Monitoring Locations                                                                        |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 7A.2: | Air Quality Ecological Receptors                                                                                                                       |
| Figure 7A.3: | Air Quality Study Area Modelled Emission Sources                                                                                                       |
| Figure 7A.4: | Annual Mean NO <sub>2</sub> Process Contribution for Full Load continuous operations for worst affected meteorological year of 2020                    |
| Figure 7A.5: | 99.79 <sup>th</sup> Percentile NO <sub>2</sub> Process Contribution for Full Load continuous operations for worst affected meteorological year of 2020 |
| Figure 7A.6: | Maximum 8-hour Running Mean CO Process Contribution for<br>Full Load continuous operations for worst affected<br>meteorological year of 2020           |

# ANNEX B: ROAD TRAFFIC FLOW DATA

### Traffic Data used in Modelling of Road Emissions

### Table B.1: 2023 baseline traffic data

| LINK                                                            | AADT (VEH/DAY) | %HDV  | SPEED (KPH) |
|-----------------------------------------------------------------|----------------|-------|-------------|
| R400 north of M6/R400 junction                                  | 2930           | 7.4%  | 70.7        |
| R400 south of M6/R400<br>junction but north of Site<br>entrance | 2810           | 17.1% | 70.7        |
| R400 south of Site entrance                                     | 2806           | 17.2% | 70.7        |
| M6                                                              | 17624          | 8.5%  | 120         |

### Table B.2: 2025 baseline traffic + committed development traffic data

| LINK                           | AADT (VEH/DAY) | %HDV  | SPEED (KPH) |
|--------------------------------|----------------|-------|-------------|
| R400 north of M6/R400 junction | 3008           | 7.7%  | 70.7        |
| R400 south of M6/R400          | 3229           | 25.3% | 70.7        |
| junction but north of Site     |                |       |             |
| entrance                       |                |       |             |
| R400 south of Site entrance    | 3047           | 21.9% | 70.7        |
| M6                             | 18436          | 10.3% | 120         |

# Table B.3: 2025 baseline traffic + committed development traffic + Proposed Developments peak overlap construction traffic data

| LINK                                                            | AADT (VEH/DAY) | %HDV  | SPEED (KPH) |
|-----------------------------------------------------------------|----------------|-------|-------------|
| R400 north of M6/R400 junction                                  | 3098           | 8.5%  | 70.7        |
| R400 south of M6/R400<br>junction but north of Site<br>entrance | 3937           | 30.4% | 70.7        |
| R400 south of Site entrance                                     | 3440           | 25.9% | 70.7        |
| M6                                                              | 19223          | 12%   | 120         |

# ANNEX C: RAW DIFFUSION TUBE RESULTS FROM GRADKO LABORATORY

### ANNEX D: ASSESSMENT OF CUMULATIVE IMPACTS

Table 7A. 49: Predicted change in annual mean NO<sub>2</sub> concentrations at discrete receptors  $(\mu g/m^3)$  due to emissions from the Proposed Development for the Cumulative scenario on natural gas, with comparison against Environmental Standard Criteria

| RECEPTOR | BACKGROUND | PC PROPOSED<br>DEVELOPMENT<br>STACK | PC %<br>AQS | PEC | PEC %<br>AQS |
|----------|------------|-------------------------------------|-------------|-----|--------------|
| R01      | 7.1        | 0.1                                 | 0.3%        | 7.2 | 18.1%        |
| R02      | 9.4        | 0.2                                 | 0.4%        | 9.6 | 23.9%        |
| R03      | 7.6        | 0.1                                 | 0.4%        | 7.7 | 19.4%        |
| R04      | 7.5        | 0.2                                 | 0.4%        | 7.7 | 19.2%        |
| R05      | 6.6        | 0.1                                 | 0.3%        | 6.7 | 16.8%        |
| R06      | 8.6        | 0.1                                 | 0.3%        | 8.7 | 21.8%        |
| R07      | 4.6        | 0.1                                 | 0.2%        | 4.7 | 11.7%        |
| R08      | 4.6        | 0.1                                 | 0.2%        | 4.7 | 11.7%        |
| R09      | 4.6        | 0.2                                 | 0.5%        | 4.8 | 12.0%        |
| R10      | 4.6        | 0.2                                 | 0.6%        | 4.8 | 12.1%        |
| R11      | 4.6        | 0.2                                 | 0.5%        | 4.8 | 12.0%        |
| R12      | 4.6        | 0.1                                 | 0.2%        | 4.7 | 11.7%        |
| R13      | 4.6        | 0.3                                 | 0.7%        | 4.9 | 12.2%        |
| S01      | 4.6        | 0.1                                 | 0.2%        | 4.7 | 11.7%        |
| S02      | 4.6        | 0.1                                 | 0.2%        | 4.7 | 11.7%        |
| S03      | 4.6        | <0.1                                | 0.1%        | 4.6 | 11.6%        |
| S04      | 4.6        | 0.1                                 | 0.3%        | 4.7 | 11.8%        |
| S05      | 4.6        | 0.2                                 | 0.5%        | 4.8 | 12.0%        |
| S06      | 4.6        | 0.2                                 | 0.4%        | 4.8 | 11.9%        |

Table 7A. 50: Predicted change in 99.79<sup>th</sup> percentile of hourly means NO<sub>2</sub> concentrations at discrete receptors ( $\mu$ g/m<sup>3</sup>) due to emissions from the Proposed Development for the Cumulative scenario on natural gas, with comparison against Environmental Standard Criteria

| Ontena   |            |                                     |             |      |              |
|----------|------------|-------------------------------------|-------------|------|--------------|
| RECEPTOR | BACKGROUND | PC PROPOSED<br>DEVELOPMENT<br>STACK | PC %<br>AQS | PEC  | PEC %<br>AQS |
| R01      | 14.2       | 4.0                                 | 2.0%        | 18.2 | 9.1%         |
| R02      | 18.8       | 7.0                                 | 3.5%        | 25.8 | 12.9%        |
| R03      | 15.2       | 6.6                                 | 3.3%        | 21.8 | 10.9%        |
| R04      | 15         | 7.6                                 | 3.8%        | 22.6 | 11.3%        |
| R05      | 13.2       | 4.3                                 | 2.1%        | 17.5 | 8.7%         |
| R06      | 17.2       | 3.7                                 | 1.8%        | 20.9 | 10.4%        |
| R07      | 9.2        | 3.6                                 | 1.8%        | 12.8 | 6.4%         |
| R08      | 9.2        | 3.6                                 | 1.8%        | 12.8 | 6.4%         |
| R09      | 9.2        | 4.1                                 | 2.1%        | 13.3 | 6.7%         |
| R10      | 9.2        | 4.0                                 | 2.0%        | 13.2 | 6.6%         |
| R11      | 9.2        | 5.2                                 | 2.6%        | 14.4 | 7.2%         |
| R12      | 9.2        | 4.8                                 | 2.4%        | 14.0 | 7.0%         |
| R13      | 9.2        | 8.5                                 | 4.3%        | 17.7 | 8.9%         |
| S01      | 9.2        | 3.5                                 | 1.8%        | 12.7 | 6.4%         |
| S02      | 9.2        | 3.4                                 | 1.7%        | 12.6 | 6.3%         |
| S03      | 9.2        | 2.9                                 | 1.5%        | 12.1 | 6.1%         |
| S04      | 9.2        | 3.8                                 | 1.9%        | 13.0 | 6.5%         |
| S05      | 9.2        | 3.4                                 | 1.7%        | 12.6 | 6.3%         |
| S06      | 9.2        | 4.2                                 | 2.1%        | 13.4 | 6.7%         |

# Table 7A. 51: Predicted change in 8-hour rolling CO concentrations at discrete receptors $(\mu g/m^3)$ due to emissions from the Proposed Development for the Cumulative scenario on natural gas, with comparison against Environmental Standard Criteria

| RECEPTOR | BACKGROUND | PC PROPOSED<br>DEVELOPMENT<br>STACK | PC %<br>AQS | PEC   | PEC %<br>AQS |
|----------|------------|-------------------------------------|-------------|-------|--------------|
| R01      | 300        | 6.7                                 | 0.1%        | 306.7 | 3.1%         |
| R02      | 300        | 9.0                                 | 0.1%        | 309.0 | 3.1%         |
| R03      | 300        | 10.9                                | 0.1%        | 310.9 | 3.1%         |
| R04      | 300        | 10.0                                | 0.1%        | 310.0 | 3.1%         |
| R05      | 300        | 4.7                                 | <0.1%       | 304.7 | 3.0%         |
| R06      | 300        | 4.3                                 | <0.1%       | 304.3 | 3.0%         |
| R07      | 300        | 4.0                                 | <0.1%       | 304.0 | 3.0%         |
| R08      | 300        | 4.4                                 | <0.1%       | 304.4 | 3.0%         |
| R09      | 300        | 4.4                                 | <0.1%       | 304.4 | 3.0%         |
| R10      | 300        | 4.8                                 | <0.1%       | 304.8 | 3.0%         |
| R11      | 300        | 6.5                                 | 0.1%        | 306.5 | 3.1%         |
| R12      | 300        | 7.0                                 | 0.1%        | 307.0 | 3.1%         |
| R13      | 300        | 13.5                                | 0.1%        | 313.5 | 3.1%         |
| S01      | 300        | 4.6                                 | <0.1%       | 304.6 | 3.0%         |
| S02      | 300        | 4.3                                 | <0.1%       | 304.3 | 3.0%         |
| S03      | 300        | 3.0                                 | <0.1%       | 303.0 | 3.0%         |
| S04      | 300        | 7.7                                 | 0.1%        | 307.7 | 3.1%         |
| S05      | 300        | 3.9                                 | <0.1%       | 303.9 | 3.0%         |
| S06      | 300        | 5.3                                 | 0.1%        | 305.3 | 3.1%         |

| REC ID |                                        |                       | ANNUAL MEAN (µg/m³) |      |           |     |            |  |  |
|--------|----------------------------------------|-----------------------|---------------------|------|-----------|-----|------------|--|--|
|        | SITE NAME                              | BKG µg/m <sup>3</sup> | CLE                 | PC   | PC/<br>CL | PEC | PEC/<br>CL |  |  |
| E1     | Raheenmore Bog<br>SAC                  | 3.1                   | 30                  | <0.1 | 0.2%      | 3.1 | 10.3%      |  |  |
| E2a    | Split Hills and Long<br>Hill Esker SAC | 3.2                   | 30                  | 0.1  | 0.2%      | 3.3 | 11.0%      |  |  |
| E2b    | Split Hills and Long<br>Hill Esker SAC | 3.3                   | 30                  | 0.1  | 0.2%      | 3.3 | 11.1%      |  |  |
| E2c    | Split Hills and Long<br>Hill Esker SAC | 3.3                   | 30                  | 0.1  | 0.2%      | 3.3 | 11.1%      |  |  |
| E3a    | Lough Ennell SAC                       | 3.1                   | 30                  | <0.1 | 0.1%      | 3.1 | 10.4%      |  |  |
| E3b    | Lough Ennell SAC<br>and SPA            | 3.0                   | 30                  | 0.1  | 0.2%      | 3.0 | 10.1%      |  |  |
| E3c    | Lough Ennell SAC                       | 3.1                   | 30                  | 0.1  | 0.2%      | 3.1 | 10.4%      |  |  |
| E3d    | Lough Ennell SAC                       | 3.0                   | 30                  | 0.1  | 0.2%      | 3.1 | 10.2%      |  |  |
| E3e    | Lough Ennell SAC<br>and SPA            | 2.9                   | 30                  | 0.1  | 0.2%      | 3.0 | 10.0%      |  |  |
| E4     | Mount Hevey Bog<br>SAC                 | 4.0                   | 30                  | 0.1  | 0.4%      | 4.2 | 13.9%      |  |  |
| E5     | Wooddown Bog SAC                       | 3.4                   | 30                  | 0.1  | 0.3%      | 3.5 | 11.5%      |  |  |

### Table 7A.52: Dispersion Modelling Results for Ecological Receptors for the Cumulative Scenario- NO<sub>X</sub> Annual Mean

### Table 7A.53: Dispersion Modelling Results for Ecological Receptors for the Cumulative Scenario- NH<sub>3</sub> Annual Mean

| REC ID |                                        |           | ANNUAL MEAN (μg/m³) |       |           |     |            |
|--------|----------------------------------------|-----------|---------------------|-------|-----------|-----|------------|
|        | SITE NAME                              | BKG µg/m³ | CLE                 | PC    | PC/<br>CL | PEC | PEC/<br>CL |
| E1     | Raheenmore Bog<br>SAC                  | 2.5       | 1                   | 0.003 | 0.3%      | 2.5 | 250.3%     |
| E2a    | Split Hills and Long<br>Hill Esker SAC | 2.5       | 1                   | 0.004 | 0.4%      | 2.5 | 253.4%     |
| E2b    | Split Hills and Long<br>Hill Esker SAC | 2.5       | 1                   | 0.004 | 0.4%      | 2.5 | 247.4%     |

Proposed Derrygreenagh Power Project, Co. Offaly Environmental Impact Assessment Report – Volume II January 2024

|        |                                        |                       | ANNUAL MEAN (µg/m³) |       |           |     |            |  |  |
|--------|----------------------------------------|-----------------------|---------------------|-------|-----------|-----|------------|--|--|
| REC ID | SITE NAME                              | BKG µg/m <sup>3</sup> | CLE                 | PC    | PC/<br>CL | PEC | PEC/<br>CL |  |  |
| E2c    | Split Hills and Long<br>Hill Esker SAC | 2.9                   | 1                   | 0.003 | 0.3%      | 2.9 | 292.3%     |  |  |
| E3a    | Lough Ennell SAC                       | 2.6                   | 1                   | 0.002 | 0.2%      | 2.6 | 255.2%     |  |  |
| E3b    | Lough Ennell SAC<br>and SPA            | 2.5                   | 1                   | 0.003 | 0.3%      | 2.5 | 254.3%     |  |  |
| E3c    | Lough Ennell SAC                       | 2.5                   | 1                   | 0.003 | 0.3%      | 2.5 | 247.3%     |  |  |
| E3d    | Lough Ennell SAC                       | 2.4                   | 1                   | 0.003 | 0.3%      | 2.4 | 244.3%     |  |  |
| E3e    | Lough Ennell SAC<br>and SPA            | 2.3                   | 1                   | 0.003 | 0.3%      | 2.3 | 232.3%     |  |  |
| E4     | Mount Hevey Bog<br>SAC                 | 2.7                   | 1                   | 0.006 | 0.6%      | 2.7 | 265.6%     |  |  |
| E5     | Wooddown Bog SAC                       | 2.4                   | 1                   | 0.005 | 0.5%      | 2.4 | 235.5%     |  |  |

### Table 7A.54: Dispersion Modelling Results for Ecological Receptors for the Cumulative Scenario – Nutrient Nitrogen Deposition (kg/ha/yr)

|        |                                        |                                                      | NUTRIENT NITROGEN DEPOSITION (KG/HA/YR) |      |           |      |            |  |  |
|--------|----------------------------------------|------------------------------------------------------|-----------------------------------------|------|-----------|------|------------|--|--|
| REC ID | SITE NAME                              | BACKGROUND<br>NITROGEN<br>DEPOSITION<br>(Kg N/ha/yr) | CLE                                     | PC   | PC/<br>CL | PEC  | PEC/<br>CL |  |  |
| E1     | Raheenmore Bog<br>SAC                  | 7.53                                                 | 5                                       | 0.02 | 0.4%      | 7.55 | 151.0%     |  |  |
| E2a    | Split Hills and Long<br>Hill Esker SAC | 6.34                                                 | 5                                       | 0.05 | 1.0%      | 6.39 | 127.8%     |  |  |
| E2b    | Split Hills and Long<br>Hill Esker SAC | 6.84                                                 | 5                                       | 0.05 | 1.0%      | 6.89 | 137.8%     |  |  |
| E2c    | Split Hills and Long<br>Hill Esker SAC | 6.96                                                 | 5                                       | 0.04 | 0.8%      | 7.00 | 140.0%     |  |  |
| E3a    | Lough Ennell SAC                       | 7.04                                                 | 5                                       | 0.02 | 0.3%      | 7.06 | 141.1%     |  |  |
| E3b    | Lough Ennell SAC<br>and SPA            | 6.28                                                 | 5                                       | 0.02 | 0.4%      | 6.30 | 126.0%     |  |  |

|        |                             |                                                      | NUTRIENT NITROGEN DEPOSITION (KG/HA/YR) |      |           |      |            |  |  |
|--------|-----------------------------|------------------------------------------------------|-----------------------------------------|------|-----------|------|------------|--|--|
| REC ID | SITE NAME                   | BACKGROUND<br>NITROGEN<br>DEPOSITION<br>(Kg N/ha/yr) | CLE                                     | PC   | PC/<br>CL | PEC  | PEC/<br>CL |  |  |
| E3c    | Lough Ennell SAC            | 6.51                                                 | 5                                       | 0.03 | 0.5%      | 6.54 | 130.7%     |  |  |
| E3d    | Lough Ennell SAC            | 7.5                                                  | 5                                       | 0.04 | 0.9%      | 7.54 | 150.9%     |  |  |
| E3e    | Lough Ennell SAC<br>and SPA | 5.98                                                 | 5                                       | 0.03 | 0.5%      | 6.01 | 120.1%     |  |  |
| E4     | Mount Hevey Bog<br>SAC      | 6.82                                                 | 5                                       | 0.05 | 1.0%      | 6.87 | 137.4%     |  |  |
| E5     | Wooddown Bog SAC            | 6.77                                                 | 5                                       | 0.04 | 0.7%      | 6.81 | 136.1%     |  |  |

### Table 7A.55: Dispersion Modelling Results for Ecological Receptors for the Cumulative Scenario – Total Acid Deposition N + S (keq/ha/yr)

| REC<br>ID | SITE NAME                              | NUTRIENT NITROGEN DEPOSITION (KG/HA/YR)             |                                                      |               |               |               |        |           |      |            |  |
|-----------|----------------------------------------|-----------------------------------------------------|------------------------------------------------------|---------------|---------------|---------------|--------|-----------|------|------------|--|
|           |                                        | BACKGROUND<br>SULPHUR<br>DEPOSITION<br>(KEQ /HA/YR) | BACKGROUND<br>NITROGEN<br>DEPOSITION<br>(KEQ /HA/YR) | MinCL<br>minN | MinCL<br>maxN | MinCL<br>maxS | РС     | PC/<br>CL | PEC  | PEC/<br>CL |  |
| E1        | Raheenmore Bog SAC                     | 0.48                                                | 0.04                                                 | 0.143         | 0.371         | 0.228         | 0.0016 | 0.4%      | 0.52 | 140.6%     |  |
| E2a       | Split Hills and Long Hill<br>Esker SAC | 0.49                                                | 0.04                                                 | 0.143         | 0.379         | 0.237         | 0.0036 | 0.9%      | 0.53 | 140.4%     |  |
| E2b       | Split Hills and Long Hill<br>Esker SAC | 0.48                                                | 0.04                                                 | 0.143         | 0.379         | 0.237         | 0.0036 | 0.9%      | 0.52 | 137.8%     |  |
| E2c       | Split Hills and Long Hill<br>Esker SAC | 0.53                                                | 0.04                                                 | 0.143         | 0.379         | 0.237         | 0.0029 | 0.8%      | 0.57 | 150.8%     |  |
| E3a       | Lough Ennell SAC                       | Not Sensitive                                       |                                                      |               |               |               |        |           |      |            |  |
| E3b       | Lough Ennell SAC and SPA               |                                                     |                                                      |               |               |               |        |           |      |            |  |

| REC<br>ID | SITE NAME                | NUTRIENT NITROGEN DEPOSITION (KG/HA/YR)             |                                                      |               |               |               |        |           |      |            |
|-----------|--------------------------|-----------------------------------------------------|------------------------------------------------------|---------------|---------------|---------------|--------|-----------|------|------------|
|           |                          | BACKGROUND<br>SULPHUR<br>DEPOSITION<br>(KEQ /HA/YR) | BACKGROUND<br>NITROGEN<br>DEPOSITION<br>(KEQ /HA/YR) | MinCL<br>minN | MinCL<br>maxN | MinCL<br>maxS | PC     | PC/<br>CL | PEC  | PEC/<br>CL |
| E3c       | Lough Ennell SAC         |                                                     |                                                      |               |               |               |        |           |      |            |
| E3d       | Lough Ennell SAC         |                                                     |                                                      |               |               |               |        |           |      |            |
| E3e       | Lough Ennell SAC and SPA |                                                     |                                                      |               |               |               |        |           |      |            |
| E4        | Mount Hevey Bog SAC      | 0.49                                                | 0.05                                                 | 0.143         | 0.358         | 0.215         | 0.0034 | 0.9%      | 0.54 | 151.8%     |
| E5        | Wooddown Bog SAC         | 0.48                                                | 0.05                                                 | 0.143         | 0.411         | 0.268         | 0.0027 | 0.7%      | 0.53 | 129.6%     |

# ANNEX E: CONSTRUCTION DUST MITIGATION MEASURES

| PHASE                | ded Construction Phase Mitigation Measures MITIGATION MEASURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      | Display the name and contact details of person(s) accountable for air quality and dust issues on the site boundary. This may be the environment manager/engineer or the site manager.                                                                                                                                                                                                                                                                                                                                                                                                             |
|                      | Display the head or regional office contact information.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Communications       | Develop and implement a Dust Management Plan (DMP), which may include measures to control other emissions, approved by the Local Authority. The level of detail will depend on the risk, and should include as a minimum the highly recommended measures in this document. The desirable measures should be included as appropriate for the site. In London additional measures may be required to ensure compliance with the Mayor of London's guidance. The DMP may include monitoring of dust deposition, dust flux, realtime PM <sub>10</sub> continuous monitoring and/or visual inspection. |
|                      | Record all dust and air quality complaints, identify cause(s), take appropriate measures to reduce emissions in a timely manner, and record the measures taken.                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Site<br>Management   | Make the complaints log available to the local authority when asked.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                      | Record any exceptional incidents that cause dust and/or air emissions, either on- or offsite, and the action taken to resolve the situation in the log book.                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                      | Undertake daily on-site and off-site visual inspections, where receptors (including roads) are nearby, to monitor dust, record inspection results, and make the log available to the local authority when asked. This should include regular dust soiling checks of surfaces such as street furniture, cars and window sills within 100m of site boundary, with cleaning to be provided if necessary.                                                                                                                                                                                             |
| Maniforing           | Carry out regular site inspections to monitor compliance with the DMP, record inspection results, and make an inspection log available to the local authority when asked.                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Monitoring           | Increase the frequency of site inspections by the person accountable for air quality<br>and dust issues on site when activities with a high potential to produce dust are<br>being carried out and during prolonged dry or windy conditions.                                                                                                                                                                                                                                                                                                                                                      |
|                      | Agree dust deposition, dust flux, or real-time PM <sub>10</sub> continuous monitoring locations with the Local Authority. Where possible commence baseline monitoring at least three months before work commences on site or, if it a large site, before work on a phase commences. Further guidance is provided by IAQM on monitoring during demolition, earthworks and construction.                                                                                                                                                                                                            |
|                      | Plan site layout so that machinery and dust causing activities are located away from receptors, as far as is possible.                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Preparing and        | Erect solid screens or barriers if required around dusty activities or the site boundary that are at least as high as any stockpiles on site.                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| maintaining the site | Fully enclose site or specific operations where there is a high potential for dust production and the site is actives for an extensive period.                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                      | Avoid site runoff of water or mud.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      | Keep site fencing, barriers and scaffolding clean using wet methods.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

### Table F.1: Embedded Construction Phase Mitigation Measures

|                                         | Remove materials that have a potential to produce dust from site as soon as possible, unless being re-used on site. If they are being re-used on-site cover as                                                                                                                                                                                                            |  |  |  |  |  |  |
|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|                                         | described below.<br>Cover, seed or fence any stockpiles to prevent wind whipping.                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |
|                                         |                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
|                                         | Ensure all vehicles switch off engines when stationary - no idling vehicles                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
| Operating<br>vehicle /                  | Avoid the use of diesel or petrol powered generators and use mains electricity or battery powered equipment where practicable.                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| machinery and<br>sustainable<br>travel  | Impose and signpost a maximum-speed-limit of 15 mph on surfaced and 10 mph on<br>unsurfaced haul roads and work areas (if long haul routes are required these<br>speeds may be increased with suitable additional control measures provided,<br>subject to the approval of the nominated undertaker and with the agreement of the<br>local authority, where appropriate). |  |  |  |  |  |  |
|                                         | Only use cutting, grinding or sawing equipment fitted or in conjunction with suitable dust suppression techniques such as water sprays or local extraction, e.g. suitable local exhaust ventilation systems.                                                                                                                                                              |  |  |  |  |  |  |
|                                         | Ensure an adequate water supply on the site for effective dust/particulate matter suppression/mitigation, using non-potable water where possible and appropriate.                                                                                                                                                                                                         |  |  |  |  |  |  |
| Operations                              | Use enclosed chutes and conveyors and covered skips.                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
|                                         | Minimise drop heights from conveyors, loading shovels, hoppers and other loading or handling equipment and use fine water sprays on such equipment wherever appropriate.                                                                                                                                                                                                  |  |  |  |  |  |  |
|                                         | Ensure equipment is readily available on site to clean any dry spillages, and clean<br>up spillages as soon as reasonably practicable after the event using wet cleaning<br>methods.                                                                                                                                                                                      |  |  |  |  |  |  |
| Measures                                | Re-vegetate earthworks and exposed areas/soil stockpiles to stabilise surfaces as soon as practicable.                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |
| specific to<br>earthwork                | Use Hessian, mulches or trackifiers where it is not possible to re-vegetate or cover with topsoil, as soon as practicable.                                                                                                                                                                                                                                                |  |  |  |  |  |  |
|                                         | Only remove the cover in small areas during work and not all at once.                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
| Maggures                                | Avoid scabbling (roughening of concrete surfaces) if possible.                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| Measures<br>specific to<br>construction | Ensure sand and other aggregates are stored in bunded areas and are not allowed to dry out, unless this is required for a particular process, in which case ensure that appropriate additional control measures are in place.                                                                                                                                             |  |  |  |  |  |  |
| Waste<br>Management                     | Avoid bonfires and burning of waste materials.                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
|                                         | Use water-assisted dust sweeper(s) on the access and local roads, to remove, as necessary, any material tracked out of the site.                                                                                                                                                                                                                                          |  |  |  |  |  |  |
| Measures                                | Avoid dry sweeping of large areas.                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
| specific to<br>trackout                 | Ensure vehicles entering and leaving sites are covered to prevent escape of materials during transport.                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
|                                         | Record all inspections of haul routes and any subsequent action in a site log book.                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
|                                         | Implement a wheel washing system.                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |